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Abstract

In the classical biased sampling problem, we have k densities π1(·), . . . , πk(·), each known up
to a normalizing constant, i.e. for l = 1, . . . , k, πl(·) = νl(·)/ml, where νl(·) is a known function
and ml is an unknown constant. For each l, we have an iid sample from πl, and the problem is to
estimate the ratios ml/ms for all l and all s. This problem arises frequently in several situations
in both frequentist and Bayesian inference. An estimate of the ratios was developed and studied by
Vardi and his co-workers over two decades ago, and since then there has been much subsequent work
on this problem from many different perspectives. In spite of this, there are no rigorous results in the
literature on how to estimate the standard error of the estimate. In this paper we present a class of
estimates of the ratios of normalizing constants that are appropriate for the case where the samples
from the πl’s are not iid sequences, but are Markov chains. We also develop an approach based
on regenerative simulation for obtaining standard errors for the estimates of ratios of normalizing
constants. These standard error estimates are valid for both the iid case and the Markov chain case.
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1 Introduction
The problem of estimating ratios of normalizing constants of unnormalized densities arises fre-
quently in statistical inference. Here we mention three instances of this problem. In miss-
ing data (or latent variable) models, suppose that the data is Xobs, and the likelihood of the
data is difficult to write down but Xobs can be augmented with a part Xmis in such a way that
the likelihood for (Xmis, Xobs) is easy to write. In this case (using generic notation) we have
pθ(Xmis |Xobs) = pθ(Xmis, Xobs)/pθ(Xobs). The denominator, i.e. the likelihood of the observed
data at parameter value θ, is precisely a normalizing constant. For the purpose of carrying out
likelihood inference, if θ1 is some reference value, knowledge of log

(
pθ(Xobs)/pθ1(Xobs)

)
is

equivalent to knowledge of log(pθ(Xobs)): for these two functions the maximum occurs at the
same point, and the negative second derivative at the maximum (i.e. the observed Fisher infor-
mation) is the same.

A second example arises when the likelihood has the form pθ(x) = gθ(x)/zθ, where gθ is a
known function. This situation arises in exponential family problems, and except for the usual
textbook examples, the normalizing constant is analytically intractable. If for some arbitrary
point θ1 we know the ratio zθ/zθ1 , then we would know pθ(x) up to a multiplicative constant and,
as before, this would be equivalent to knowing pθ(x) itself. A third example arises in certain
hyperparameter selection problems in Bayesian analysis. Suppose that we wish to choose a prior
from the family {πh, h ∈ H}, where the πh’s are densities with respect to a dominating mea-
sure µ. For any h ∈ H, the marginal likelihood of the data X when the prior is πh is given by
mh(X) =

∫
pθ(X)πh(θ)µ(dθ), i.e. it is the normalizing constant in the statement “the posterior

is proportional to the likelihood times the prior.” The empirical Bayes choice of h is by definition
argmaxhmh(X). Suppose that h1 is some arbitrary point inH. As in the previous two examples,
for the purpose of finding the empirical Bayes choice of h, knowing mh(X)/mh1(X) is equiva-
lent to knowing mh(X). (One may also be interested in the closely related problem of estimating
the posterior expectation of a function f(θ) when the hyperparameter is h, which is given by
Eh(f(θ) |X) =

(∫
f(θ)pθ(X)πh(θ)µ(dθ)

)
/mh(X). Estimating Eh(f(θ) |X) as h varies is rel-

evant in Bayesian sensitivity analysis. The scheme for doing this used in Buta and Doss (2011)
does not involve estimating mh(X) itself and requires only estimating mh(X)/mh1(X) for some
fixed h1 ∈ H.)

Now, estimation of a normalizing constant is generally a difficult problem; for example, the
so-called harmonic mean estimator proposed by Newton and Raftery (1994) typically converges
at a rate that is much slower than

√
n (Wolpert and Schmidler, 2011). On the other hand, es-

timating a ratio of normalizing constants typically can be done with a
√
n-consistent estimator.

To illustrate this fact, consider the second of the problems described above, and let µ be the
measure with respect to which the pθ’s are densities. Suppose that X1, X2, . . . are a “sample”
from pθ1 (iid sample or ergodic Markov chain output). For the simple and well-known estimator
(1/n)

∑n
i=1 gθ(Xi)/gθ1(Xi) we have

1

n

n∑
i=1

gθ(Xi)

gθ1(Xi)

a.s.−→
∫

gθ(x)

gθ1(x)
pθ1(x)µ(dx) =

zθ
zθ1

, (1.1)

and under certain moment conditions on the ratio gθ(Xi)/gθ1(Xi) and mixing conditions on the
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chain, the estimate on the left of (1.1) also satisfies a central limit theorem (CLT). In fact, in all the
problems mentioned above, it is not necessary to estimate the normalizing constants themselves,
and it is sufficient to estimate ratios of normalizing constants.

The estimator above does not work well if θ is not close to θ1, or more precisely, if gθ and
gθ1 are not close. It is better to choose θ1, . . . , θk appropriately spread out in the parameter space
Θ, and on the left side of (1.1) replace gθ1 with

∑k
s=1wsgθs , where ws > 0, s = 1, . . . , k. The

hope is that gθ will be close to at least one of the gθs’s, and so preclude having large variances.
To implement this, suppose we know all the ratios zθs/zθt , s, t ∈ {1, . . . , k}, or equivalently, we
know zθ1/zθs , s ∈ {1, . . . , k}. In this case, if for each l = 1, . . . , k there is available a sample
X

(l)
1 , . . . , X

(l)
nl from gθl/zθl , then letting n =

∑k
l=1 nl and al = nl/n, we have

k∑
l=1

1

nl

nl∑
i=1

algθ(X
(l)
i )∑k

s=1 asgθs(X
(l)
i )(zθ1/zθs)

a.s.−→
k∑
l=1

∫
algθ(x)∑k

s=1 asgθs(x)(zθ1/zθs)

gθl(x)

zθl
µ(dx) (1.2)

=

∫ k∑
l=1

algθl(x)/zθl∑k
s=1 asgθs(x)(zθ1/zθs)

gθ(x)µ(dx) =
zθ
zθ1

.

When compared with the estimate on the left side of (1.1), the estimate on the left side of (1.2) is
accurate over a much bigger range of θ’s. But to use it, it is necessary to be able to estimate the
ratios zθ1/zθs , s ∈ {1, . . . , k}, and it is this problem that is the focus of this paper.

We now state explicitly the version of this problem that we will deal with here, and we change
to the notation that we will use for the rest of the paper. We have k densities π1, . . . , πk with
respect to the measure µ, which are known except for normalizing constants, i.e. we have πl =

νl/ml, where the νl’s are known functions and theml’s are unknown constants. For each lwe have
a Markov chain Φl = {X(l)

1 , . . . , X
(l)
nl } with invariant density πl, the k chains are independent,

and the objective is to estimate all possible ratios mi/mj, i 6= j or, equivalently, the vector

d = (m2/m1, . . . ,mk/m1).

When the samples are iid sequences, this is the biased sampling problem introduced by Vardi
(1985), which contains examples that differ in character quite a bit from those considered here.

Suppose we are in the iid case, and consider the pooled sample S =
{
X

(l)
i , i = 1, . . . , nl, l =

1, . . . , k
}

. Let x ∈ S, and suppose that x came from the lth sample. If we pretend that the only
thing we know about x is its value, then the probability that x came from the lth sample is

nlπl(x)∑k
s=1 nsπs(x)

=
alνl(x)/ml∑k
s=1 asνs(x)/ms

:= λl(x,m), (1.3)

wherem = (m1, . . . ,mk). Geyer (1994) proposed to treat the vectorm as an unknown parame-
ter and to estimate it by maximizing the quasi-likelihood function

Ln(m) =
k∏
l=1

nl∏
i=1

λl(X
(l)
i ,m) (1.4)

with respect tom. Actually, there is a non-identifiability issue regarding Ln: for any constant c >
0, Ln(m) and Ln(cm) are the same. So we can estimate m only up to an overall multiplicative
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constant, i.e. we can estimate only d. Accordingly, Geyer (1994) proposed to estimate d by
maximizing Ln(m) subject to the constraint m1 = 1. (A more detailed discussion of the quasi-
likelihood function (1.4) is given in Section 2.) In fact, the resulting estimate, d̂, was originally
proposed by Vardi (1985), and studied further by Gill, Vardi and Wellner (1988), who showed that
it is consistent and asymptotically normal, and established its optimality properties, all under the
assumption that for each l = 1, . . . , k, X(l)

1 , . . . , X
(l)
nl is an iid sequence. Geyer (1994) extended

the consistency and asymptotic normality result to the case where the k sequences X(l)
1 , . . . , X

(l)
nl

are Markov chains satisfying certain mixing conditions. The estimate was rederived in Meng
and Wong (1996), Kong et al. (2003), and Tan (2004) from completely different perspectives, all
under the iid assumption.

As mentioned earlier, for the kinds of problems we have in mind the distributions πl are ana-
lytically intractable, and estimates of the sort (1.1) or (1.2), and the estimate of d are applicable to
a much larger class of problems if we are willing to use Markov chain samples instead of iid sam-
ples. Estimation of the asymptotic covariance matrix of d̂ is then difficult for two reasons. First,
the estimate d̂ is obtained as the solution to a constrained optimization problem, and second,
when the sequences X(l)

1 , . . . , X
(l)
nl are Markov chains instead of iid sequences, the asymptotic

covariance matrix has a complex form and is difficult to estimate consistently.
The present paper deals with two issues. First, none of the authors cited above give consis-

tent estimators of the variance, even in the iid case. (For the iid case, Kong et al. (2003) give
an estimate that involves the inverse of a certain Fisher information matrix, but this formal cal-
culation does not establish consistency of the estimate, or even the necessary CLT, nor do the
authors make such claims.) As mentioned earlier, the problem of estimating the variance is far
more challenging when the samples are Markov chains as opposed to iid sequences. In this paper
we give a CLT for the vector d̂ based on regenerative simulation. The main benefit of this result
is that it gives, essentially as a free by-product, a simple consistent estimate of the covariance
matrix in the Markov chain setting. Second, the estimate obtained by the afore-mentioned au-
thors is optimal in the case where the samples are iid. When the samples are Markov chains, the
estimates are no longer optimal. We present a method for forming estimators which are suitable
in the Markov chain setting. The regeneration-based CLT and estimate of the variance both apply
to the class of estimators that we propose.

The rest of this paper is organized as follows. In Section 2 we use ideas from regenerative
simulation to develop a CLT for d̂, and we show how our estimate of variance emerges as a by-
product. In Section 3 we describe a class of estimators of d which are suitable when the samples
are Markov chains, as opposed to iid samples, and we also propose a method for choosing an
estimator from this class. In Section 4 we present a small study that illustrates the gains obtained
from using an estimate of d designed for Markov chains, and we illustrate our methodology by
showing how it can be used to estimate certain quantities of interest in the Ising model of statis-
tical mechanics. The Appendix provides proofs of the three assertions made by the theorem in
Section 2, namely strong consistency of d̂, the CLT for d̂, and strong consistency of the estimate
of variance of d̂.
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2 A Regeneration-Based CLT and Variance Estimate
We begin by considering more carefully the quasi-likelihood function for m given by (1.4), and
for the technical development it is much more convenient to work on the log scale. So define the
vector ζ by

ζl = − log(ml) + log(al), for l = 1, . . . , k, (2.1)

and rewrite (1.3) as

pl(x, ζ) =
νl(x)eζl∑k
s=1 νs(x)eζs

, for l = 1, . . . , k. (2.2)

Clearly, ζ determines and is determined by (m1, . . . ,mk), and the log quasi-likelihood function
for ζ is

ln(ζ) =
k∑
l=1

nl∑
i=1

log
(
pl(X

(l)
i , ζ)

)
. (2.3)

In (2.1), (m1, . . . ,mk) is an arbitrary vector with strictly positive components, i.e. ml need not
correspond to the normalizing constant for νl. We will use ζ(t) to denote the true value of ζ, i.e.
the value it takes when the ml’s are the normalizing constants for the νl’s. The non-identifiability
issue now is that for any constant c ∈ R, ln(ζ) and ln(ζ+ c1k) are the same (here, 1k is the vector
of k 1’s), so we can estimate ζ(t) only up to an additive constant. Accordingly, with ζ0 ∈ Rk

defined by [ζ0]l = [ζ(t)]l −
(∑k

s=1[ζ(t)]s
)
/k, Geyer (1994) proposed to estimate ζ0 by ζ̂, the

maximizer of ln subject to the linear constraint ζ>1k = 0, and thus obtain an estimate of d.
The term pl(x, ζ) in (2.2) has the appearance of a likelihood ratio, and in the denominator,

the probability measure νs/ms is given weight proportional to the length of the chain Φs. Now
Gill et al.’s (1988) optimality result does not apply to the Markov chain case, in which the chains
Φ1, . . . ,Φk mix at possibly different rates, and the as’s should in some sense reflect the vague
notion of “effective sample sizes” of the different chains. The optimal choice of the vector a =

(a1, . . . , ak) is very difficult to determine theoretically, and in Section 3 we describe an empirical
method for choosing a. Accordingly in (2.1) and henceforth, a will not necessarily be given by
al = nl/n, but will be an arbitrary probability vector satisfying the condition that al > 0 for
l = 1, . . . , k.

2.1 Regeneration and a Minorization Condition
We are interested in obtaining a standard error estimate for ζ̂. To describe our approach, we first
briefly review the available methods for estimating variances based on Markov chain output. Be-
cause ζ̂ is a complicated estimate, we first discuss the much simpler case where we have a single
Markov chain X1, X2, . . . on the measurable space (X,B), with invariant distribution π, f : X→
R is a function, and we are interested in estimating the variance of f̄n := n−1

∑n
i=1 f(Xi). The

commonly used approaches are those based on spectral methods, batching, and regeneration (see,
e.g., Geyer, 1992; Mykland, Tierney and Yu, 1995; Jones et al., 2006). Among these three, the
cleanest is the one based on regenerative simulation.
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A regeneration is a random time at which a stochastic process probabilistically restarts itself.
The “tours” made by the chain in between such random times are iid, and this fact makes much
easier the asymptotic analysis of averages, and of statistics based on vectors of averages. In the
discrete state space setting, if x ∈ X is any point to which the chain returns infinitely often, then
the times of return to x form a sequence of regenerations. For most of the Markov chains used
in MCMC algorithms, the state space is continuous, and there is no point to which the chain
returns infinitely often with probability one. Even when the state space is discrete, regenerations
based on returns to a point x, as described above, are often not useful, because if x has very small
probability under the stationary distribution, then on average it will take a very long time to return
to x. Fortunately, Mykland et al. (1995) provided a general technique for identifying a sequence
of regeneration times 1 = τ0 < τ1 < τ2 < · · · that is based on the construction of a minorization
condition. This construction will be reviewed shortly, but we now briefly sketch how having a
regeneration sequence {τt}∞t=0 enables us to construct a simple estimate of the standard error of
f̄ . Define

Yt =
τt−1∑
i=τt−1

f(Xi) and Tt =
τt−1∑
i=τt−1

1 = τt − τt−1, t = 1, 2, . . . ,

and note that the pairs (Yt, Tt) form an iid sequence. If we run the chain for ρ regenerations, then
the total number of cycles, starting at τ0, is given by n =

∑ρ
t=1 Tt. We may write f̄ as∑n

i=1 f(Xi)

n
=

∑ρ
t=1 Yt∑ρ
t=1 Tt

=

(∑ρ
t=1 Yt

)
/ρ(∑ρ

t=1 Tt
)
/ρ
. (2.4)

Equation (2.4) expresses f̄ as a ratio of two averages of iid quantities, and this representation
enables us to use the delta method to obtain both a CLT for f̄ and a simple standard error estimate
for f̄ .

An outline of the argument is as follows. From (2.4) we see that as ρ → ∞ (which implies
that n→∞) we have

Eπ(f(X))
a.s.←−

∑n
i=1 f(Xi)

n
=

(∑ρ
t=1 Yt

)
/ρ(∑ρ

t=1 Tt
)
/ρ

a.s.−→ E(Y1)

E(T1)
, (2.5)

where the convergence statement on the left follows from the ergodic theorem, and the con-
vergence statement on the right follows from two applications of the strong law of large num-
bers. (In (2.5) the subscript π to the expectation indicates that X ∼ π.) From (2.5) we obtain
E(Y1) = Eπ(f(X))E(T1). Now the bivariate CLT gives

ρ1/2

(
Ȳ − Eπ(f(X))E(T1)

T̄ − E(T1)

)
d→ N (0,Σf ), (2.6)

where Σf = Cov
(
(Y1, T1)

>). The delta method applied to the function h(y, t) = y/t gives the
CLT

ρ1/2
(
Ȳ /T̄ − Eπ(f(X))

) d→ N (0, σ2
f ),
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where σ2
f = (∇h)>Σf ∇h (and ∇h is evaluated at the vector of means in (2.6)). Moreover, it is

straightforward to check that for the variance estimator

σ̂2
f =

∑ρ
t=1(Yt − f̄Tt)2

ρT̄ 2
,

we have σ̂2
f

a.s.−→ σ2
f . The regularity conditions needed to make this argument rigorous are spelled

out when we discuss the case of the more complicated estimator ζ̂ (Section 2.3 and the Ap-
pendix).

The argument above hinges on being able to arrive at a sequence of regeneration times, and
whether these are useful depends on whether the sequence has the property that the length of the
tours between regenerations is not very large. We now describe the minorization condition that
can sometimes be used to construct useful regeneration sequences. Let K(x,A) be the Markov
transition distribution, and suppose that for each x ∈ X, K(x, ·) has density k(x, ·) with respect
to a dominating measure µ. The construction described in Mykland et al. (1995) requires the
existence of a function s : X→ [0, 1), whose expectation with respect to π is strictly positive, and
a probability density q with respect to µ, such that k(·, ·) satisfies

k(x, x′) ≥ s(x)q(x′) for all x, x′ ∈ X.

This is called a minorization condition and, as we describe below, it can be used to introduce
regenerations into the Markov chain driven by k. Define

r(x, x′) =
k(x, x′)− s(x)q(x′)

1− s(x)
.

Note that for fixed x ∈ X, r(x, x′) is a density function in x′. We may therefore write

k(x, x′) = s(x)q(x′) + (1− s(x))r(x, x′),

which gives a representation of k(x, ·) as a mixture of two densities, q(·) and r(x, ·). This pro-
vides an alternative method of simulating from k. Suppose that the current state of the chain is
Xn. We generate δn ∼ Bernoulli(s(Xn)). If δn = 1, we draw Xn+1 ∼ q; otherwise, we draw
Xn+1 ∼ r(Xn, ·). Note that if δn = 1, the next state of the chain is drawn from q, which does
not depend on the current state. Hence the chain “forgets” the current state and we have a regen-
eration. To be more specific, suppose we start the Markov chain with X1 ∼ q and then use the
method described above to simulate the chain. Each time δn = 1, we have Xn+1 ∼ q and the
process stochastically restarts itself; that is, the process regenerates.

In practice, simulating from r can be extremely difficult. Fortunately, Mykland et al. (1995),
following Nummelin (1984, p. 62), noticed a clever way of circumventing the need to draw from
r. Instead of making a draw from the conditional distribution of δn given xn and then generating
xn+1 given (δn, xn), which would result in a draw from the joint distribution of (δn, xn+1) given
xn, we simply draw from the conditional distribution of xn+1 given xn in the usual way (i.e. using
k), and then draw δn given (xn, xn+1). This alternative sampling mechanism yields a draw from
the same joint density, but avoids having to draw from r. Moreover, given (xn, xn+1), δn has a
Bernoulli distribution with success probability given simply by

P
(
δn = 1 |xn = x′, xn+1 = x

)
=
s(x′)q(x)

k(x |x′)
.

6



2.2 A Quasi-Likelihood Function Designed for the Markov Chain Setting
As mentioned earlier, Geyer (1994) showed that when we take aj = nj/n, the maximizer of the
log quasi-likelihood function defined by (2.3) (subject to the constraint ζ>1k = 0) is a consistent
estimate of the true value ζ0, and also satisfies a CLT, even when the k sequences {X(l)

i }
nl
i=1, l =

1, . . . , k are Markov chains. But when the k sequences are Markov chains, the choice aj = nj/n

is no longer optimal, and for other choices of a, the (constrained) maximizer of (2.3) is not
necessarily even consistent. We will present a new log quasi-likelihood function which does yield
consistent asymptotically normal estimates, and before doing this, we give a brief motivating
argument.

Suppose that we are in the simple case where we have a parametric family {pθ, θ ∈ Θ}
and we observe data Y1, . . . , Yn

iid∼ pθ0 for some θ0 ∈ Θ. Let ly(θ) = log(pθ(y)), and let Q(θ) =

Eθ0(lY (θ)). The fact that argmaxθQ(θ) = θ0 is well known (and easy to see via a short argument
involving Jensen’s inequality). The log likelihood function based on Y1, . . . , Yn is

∑n
i=1 lYi(θ).

By the strong law of large numbers,

n−1
∑n

i=1 lYi(θ)
a.s.−→ Q(θ) for all θ ∈ Θ, (2.7)

and assuming sufficient regularity conditions, argmaxθ n
−1
∑n

i=1 lYi(θ)
a.s.−→ argmaxθQ(θ) =

θ0, i.e. the maximum likelihood estimator is consistent.
We now return to the present situation, in which for l = 1, . . . , k, {X(l)

i }
nl
i=1 is a Markov chain

with invariant density πl. Suppose we use ln(ζ) given by (2.3), with a an arbitrary probability
vector (i.e. a is not necessarily given by aj = nj/n), and let Q(ζ) = Eζ0

(ln(ζ)). The key
condition

argmax
ζ

Q(ζ) = ζ0 (2.8)

need not hold, and the constrained maximizer of ln(ζ) may converge, but not to the true value.
With this in mind, suppose that a is an arbitrary probability vector with non-zero entries and

define w ∈ Rk by
wl = al

n

nl
, l = 1, . . . , k. (2.9)

The log quasi-likelihood function we will use is

`n(ζ) =
k∑
l=1

wl

nl∑
i=1

log
(
pl(X

(l)
i , ζ)

)
(2.10)

instead of ln given by (2.3) [note the slight change of notation from l to `]. As will emerge in our
proofs of consistency and asymptotic normality of the constrained maximizer of `n(ζ), for this
log quasi-likelihood function, the stochastic process (in ζ) n−1`n(ζ) converges almost surely to
a function of ζ which is maximized at ζ0, a condition that plays the role of (2.7) and (2.8). Note
that if al = nl/n, then wl = 1 and (2.10) reduces to (2.3).
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2.3 A CLT for the Estimate Designed for Markov Chains
We assume that for l = 1, . . . , k, chain l has Markov transition density kl(x, x′) (with respect to
some measure µ) which satisfies the minorization condition

kl(x, x
′) ≥ sl(x)ql(x

′) for all x, x′ ∈ X (2.11)

for some density ql and function sl : X → [0, 1) with Eπl(sl(X)) > 0, and that the chain has
been run for ρl regenerations. Let 1 = τ

(l)
0 < τ

(l)
1 < · · · < τ

(l)
ρl denote the regeneration times

of the lth chain, and let T (l)
t = τ

(l)
t − τ

(l)
t−1 be the length of the tth tour of the lth chain. So the

length of the lth chain, nl = T
(l)
1 + · · · + T

(l)
ρl , is random. We will assume that ρ1, . . . , ρk → ∞

in such a way that ρl/ρ1 → cl ∈ (0,∞), for l = 1, . . . , k. We will allow the vector a to depend
on ρ = (ρ1, . . . , ρk), i.e. a = a(ρ) (although we will suppress this dependence in the notation
except when this dependence matters), and we will make the minimal assumption that a(ρ) → α

as ρ1, . . . , ρk → ∞, where α is a probability vector with strictly positive entries. The extra
generality is needed if we wish to choose a in a data-driven way (cf. Remark 3 of Section 3).
The definitions of ζ and pl(x, ζ) given by (2.1) and (2.2), respectively, are still in force, ζ0 is still
the centered version of the true value of ζ, but now ζ̂ is the constrained maximizer of the new
log quasi-likelihood function (2.10). We will show that ζ̂ is a consistent asymptotically normal
estimate of ζ0, and since ζ0 determines and is determined by d, this will produce a corresponding
estimate d̂ of d. Before proceeding, we mention the fact that difficulties arise if the supports of
the distributions π1, . . . , πk differ (the difficulties are pervasive: for the case where we have a
continuum of distributions {πθ, θ ∈ Θ}, the simple estimate (1.1) is not even defined if πθ is
not absolutely continuous with respect to πθ1). So for the rest of this paper, we will assume that
the k distributions π1, . . . , πk are mutually absolutely continuous. We do not really need to make
an assumption this strong, but the assumption is satisfied for all the classes of problems we are
considering, and making it eliminates some technical issues.

In order to state our CLT for the vector ρ1/2
1 (d̂ − d), we need to define the quantities that

go into the expression for the asymptotic variance. We first consider the vector ρ1/2
1 (ζ̂ − ζ0),

whose covariance matrix is singular (since this vector sums to 0). The asymptotic distribution
of ρ1/2

1 (ζ̂ − ζ0) involves the matrices B and Ω defined below. Let ζα be the vector whose
components are [ζα]l = − log(ml) + log(αl), and let B be the k × k matrix given by

Brr =
k∑
j=1

αjEπj
(
pr(X, ζα)[1− pr(X, ζα)]

)
, r = 1, . . . , k,

Brs = −
k∑
j=1

αjEπj
(
pr(X, ζα)ps(X, ζα)

)
, r, s = 1, . . . , k, r 6= s.

(2.12)

We will be using the natural estimate defined by

B̂rr =
k∑
l=1

al

(
1

nl

nl∑
i=1

pr(X
(l)
i , ζ̂)

[
1− pr(X(l)

i , ζ̂)
])
, r = 1, . . . , k,

B̂rs = −
k∑
l=1

al

(
1

nl

nl∑
i=1

pr(X
(l)
i , ζ̂)ps(X

(l)
i , ζ̂)

)
, r, s = 1, . . . , k, r 6= s.

(2.13)
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Let

y
(r,l)
i (a) = pr(X

(l)
i , ζ0)− Eπl

(
pr(X, ζ0)

)
, i = 1, . . . , nl,

y
(r,l)
i (α) = pr(X

(l)
i , ζα)− Eπl

(
pr(X, ζα)

)
, i = 1, . . . , nl,

(2.14)

and note that both y(r,l)
i (a) and y(r,l)

i (α) have mean 0. Define

Y
(r,l)
t (a) =

τ
(l)
t −1∑
i=τ

(l)
t−1

y
(r,l)
i (a), Ȳ (r,l)(a) =

1

ρl

ρl∑
t=1

Y
(r,l)
t (a),

Y
(r,l)
t (α) =

τ
(l)
t −1∑
i=τ

(l)
t−1

y
(r,l)
i (α), Ȳ (r,l)(α) =

1

ρl

ρl∑
t=1

Y
(r,l)
t (α), and T̄ (l) =

1

ρl

ρl∑
t=1

T
(l)
t .

(2.15)

Let Ω be the k × k matrix defined by

Ωrs =
k∑
l=1

α2
l

cl

E
(
Y

(r,l)
1 (α)Y

(s,l)
1 (α)

)(
E(T

(l)
1 )
)2 , r, s = 1, . . . , k, (2.16)

To obtain an estimate Ω̂, we let

Z
(r,l)
t =

τ
(l)
t −1∑
i=τ

(l)
t−1

pr(X
(l)
i , ζ̂) and µ̂(l)

r =

∑nl
i=1 pr(X

(l)
i , ζ̂)

nl
,

and define Ω̂ by

Ω̂rs =
k∑
l=1

a2
l

cl

1

(T̄ (l))2

1

ρl

ρl∑
t=1

(
Z

(r,l)
t − T (l)

t µ̂(l)
r

)(
Z

(s,l)
t − T (l)

t µ̂(l)
r

)
, r, s = 1, . . . , k. (2.17)

The function g : Rk → Rk−1 that maps ζ0 into d is

g(ζ) =


eζ1−ζ2a2/a1

eζ1−ζ3a3/a1
...

eζ1−ζkak/a1

 , (2.18)

and its gradient at ζ0 (in terms of d) is

D =


d2 d3 . . . dk
−d2 0 . . . 0

0 −d3 . . . 0
...

... . . . ...
0 0 . . . −dk

 . (2.19)
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We have d = g(ζ0), and by definition d̂ = g(ζ̂).
The theorem below has three parts, pertaining to the strong consistency of d̂, asymptotic nor-

mality of d̂, and a consistent estimate of the asymptotic covariance matrix of d̂. For consistency
we need only minimal assumptions on the Markov chains Φ1, . . . ,Φk, namely the so-called basic
regularity conditions (irreducibility, aperiodicity and Harris recurrence) that are needed for the
ergodic theorem (Meyn and Tweedie, 1993, Chapter 17). CLTs and associated results always
require a stronger condition, and the one that is most commonly used is geometric ergodicity.
The theorem refers to the following conditions, which pertain to each l = 1, . . . , k.

A1 The Markov chain {X(l)
1 , X

(l)
2 , . . .} satisfies the basic regularity conditions.

A2 The Markov chain {X(l)
1 , X

(l)
2 , . . .} is geometrically ergodic.

A3 The Markov transition density kl satisfies the minorization condition (2.11).

For a square matrix C, C† will denote the Moore-Penrose inverse of C.

Theorem 1 Suppose that for each l = 1, . . . , k, the Markov chain {X(l)
1 , X

(l)
2 , . . .} has invariant

distribution πl.

1. Under A1, the log quasi-likelihood function (2.10) has a unique maximizer subject to the
constraint ζ>1k = 0. Let ζ̂ denote this maximizer, and let d̂ = g(ζ̂). Then as ρ1 → ∞,
d̂

a.s.−→ d.

2. Under A1 and A2, as ρ1 →∞,

ρ
1/2
1 (d̂− d)

d→ N (0,W ) where W = D>B†ΩB†D. (2.20)

3. Assume A1–A3. Let D̂ be the matrix D in (2.19) with d̂ in place of d, and let B̂ and Ω̂ be
defined by (2.13) and (2.17), respectively. Then, Ŵ := D̂>B̂†Ω̂B̂†D̂ is a strongly consistent
estimator of W .

3 Choice of the Vector a
As mentioned earlier, the log quasi-likelihood that has been proposed and studied in the literature
involves the functions pl(x, ζ) given by (2.2), which have the form

nl
n
νl(x)/ml∑k

s=1
ns
n
νs(x)/ms

, (3.1)

where in the denominator of (3.1), the probability density νs(x)/ms is given weight proportional
to the length of the sth chain. Intuitively, one would want to replace ns with the “effective sample
size” for chain s, so that if chain s mixes slowly, the weight that is given to νs(x)/ms is small.
Unfortunately, there is really no such thing as an effective sample size because the effect of slow
mixing varies quite a bit with the function whose mean is being estimated. Therefore, it is better to
take a direct approach that involves replacing the vector (n1/n, . . . , nk/n) by a probability vector

10



a, and choose a to minimize the variance of the resulting estimator. (It should be emphasized
that the estimator is a complicated function of k chains.)

In more detail, we do the following. Let Sk = {a ∈ Rk : a1, . . . , ak ≥ 0 and
∑k

s=1 as = 1}
be the k-dimensional simplex. For each a ∈ Sk, in (3.1) replace ns/n by as and form the
corresponding log quasi-likelihood function (see equation (2.10)), call it `(a)

n (ζ). We let ζ̂a be
the constrained maximizer of `(a)

n (ζ), and let d̂a be the corresponding estimate of d. Let Wa be
the covariance matrix of d̂a given by Part 2 of Theorem 1, and let Ŵa be its estimate. We choose
a to minimize trace(Ŵa) (this corresponds to the classical “A-optimal design”).

It should be noted that we are able to carry out this optimization scheme precisely because
Theorem 1 enables us to estimate Wa. It is also worth noting that once we have constructed the k
regeneration sequences τ (l)

0 < τ
(l)
1 < · · · < τ

(l)
ρl , l = 1, . . . , k, these same sequences may be used

in the computation of Ŵa for all a ∈ S.

Remarks

1. It is natural to ask whether in the Markov chain case our procedure gives rise to an optimal
estimate of d, and we now address this question. To keep the discussion as simple as possible,
we consider the case k = 2. Let B be the set of all “bridge functions” β : X → R satisfying
the conditions that 0 < |

∫
β(x)π1(x)π2(x)µ(dx)| <∞ and β(x) = 0 when either π1(x) = 0

or π2(x) = 0. It is easy to see that when the two sequences X(l)
1 , . . . , X

(l)
nl , l = 1, 2 are each

iid, for any β ∈ B, the estimate

d̂2 =
n−1

1

∑n1

i=1 β(X
(1)
i )ν2(X

(1)
i )

n−1
2

∑n2

i=1 β(X
(2)
i )ν1(X

(2)
i )

is a consistent and asymptotically normal estimate of d2. Meng and Wong (1996) show that
within B, the function for which the asymptotic variance is minimized is

βopt,iid(x) =
[
s1ν1(x) + s2ν2(x)/d2

]−1
,

where sj = nj/n, j = 1, 2. Because this function involves the unknown d2, Meng and Wong
(1996) propose an iterative scheme in which we start with, say, d̂(0)

2 = 1, and at stage m, we
form

d̂
(m+1)
2 =

1

n1

n1∑
i=1

ν2(X
(1)
i )

s1ν1(X
(1)
i ) + s2ν2(X

(1)
i )/d̂

(m)
2

1

n2

n2∑
i=1

ν1(X
(2)
i )

s1ν1(X
(2)
i ) + s2ν2(X

(2)
i )/d̂

(m)
2

.

They show that limm→∞ d̂
(m)
2 exists and is exactly equal to the estimate considered by Geyer

(1994), and so established an equivalence between the iterative bridge estimator and the esti-
mate based on maximization of the log quasi-likelihood function.

When the sequences X(l)
1 , . . . , X

(l)
nl , l = 1, 2 are Markov chains, the optimal bridge function

has the form βopt,mcmc(x) = β∗(x)βopt,iid(x), where the correction factor, β∗(x), is the solu-
tion to a complicated Fredholm integral equation (Romero, 2003) and reflects the dependence
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structure of the two chains. In particular, for the case of Markov chains, the optimal bridge
function need not have the form

β(x) =
[
t1ν1(x) + t2ν2(x)

]−1
, (3.2)

for any t1, t2. Unfortunately, β∗ is very hard to identify, let alone estimate. To conclude,
since our procedure is, effectively, searching within the class (3.2), it will not yield an optimal
estimate in general, and instead should be viewed as a method for yielding estimates which
are practically useful, even if not optimal.

2. A crude way to find âopt := argmina trace(Ŵa) is to calculate trace(Ŵa) as a varies over a
grid in Sk and then find the minimizing a. This is inefficient and unnecessary, as there exist
efficient algorithms for minimizing real-valued functions of several variables; see, e.g., Robert
and Casella (2004, Chapter 5).

3. The vector âopt can be calculated from a small pilot experiment, after which new chains are
run and used to form the log quasi-likelihood function `(âopt)

n (ζ), from which we obtain ζ̂ (and
hence d̂).

4. If for each l, X(l)
1 , . . . , X

(l)
nl is an iid sequence, then a regeneration occurs at each step. In this

case, there is no need to estimate a, since the optimal value is known to be aj = nl/n (Meng
and Wong, 1996). The wl’s in (2.9) reduce to 1, and the log quasi-likelihood function (2.10)
reduces to exactly the log quasi-likelihood function used by Geyer (1994), so our estimate is
exactly the estimate introduced by Vardi (1985), who worked in the iid setting.

4 Illustrations
Here we have two goals. In Section 4.1 we provide a simulation study to show the gains in
efficiency that are possible if we use the method for choosing the weight vector a described in
Section 3. Our illustration involves toy problems. The purpose of Section 4.2 is to demonstrate
the applicability of our methodology, and we return to the second of the three classes of problems
we discussed in Section 1, where we have a family of probability densities of the form pθ(x) =

gθ(x)/zθ, which are intractable because the normalizing constant zθ cannot be computed in closed
form. Our focus here is a bit different, in that we are not interested in estimating the family
zθ, θ ∈ Θ; rather, we are now interested in estimating a family of expectations of the form
Eθ(U(X)), θ ∈ Θ, where U is a function, as well as estimating functions of these expectations.
Our illustration is in the context of the Ising model of statistical physics, and we show how to
estimate the internal energy and specific heat of the system as a function of temperature.

4.1 Gains in Efficiency When Using the Optimal Weight Vector a
Recall that âopt = argmina trace(Ŵa) is calculated from a small pilot experiment. Let d̂âopt be
the corresponding estimate of d. Also, let d̂conv denote the estimate of d obtained when we use
the conventional choice aj = nj/n. In this section we demonstrate through a simulation study
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that significant gains in efficiency are possible if we use d̂âopt instead of d̂conv in situations where
the Markov chains mix at different rates. We consider a very simple situation where k = 2, so
that d is just d2. We take π1 and π2 to be two t distributions, specifically π1 = t5,1 and π2 = t5,0,
where tr,µ denotes the t distribution with r degrees of freedom, centered at µ. The representation
πl = νl/ml is taken to be trivial: νl = πl and ml = 1 for l = 1, 2. So d2 = m2/m1 is known to
be 1, but we proceed to estimate it as if we didn’t know that fact.

In our simulations, chain 1 is an iid sequence from π1. Chain 2 is an independence Metropolis-
Hastings (IMH) chain with proposal density t5,µ. That is, if the current state of the chain
is x, a proposal Y ∼ t5,µ is generated; the chain moves to Y with acceptance probability
min

{
[t5,0(Y )t5,µ(x)]/[t5,0(x)t5,µ(Y )], 1

}
, and stays at x with the remaining probability. We will

let µ range over a fine grid in (−3, 3). Note that when µ = 0, the proposal is always accepted,
and the chain is an iid sequence from t5,0, but as µ moves away from 0 in either direction, pro-
posals are less likely to be accepted, and the mixing rate of the chain is slower. It is simple
to check that infx

(
t5,µ(x)/t5,0(x)

)
> 0, which implies that the IMH algorithm is uniformly er-

godic (Mengersen and Tweedie, 1996, Theorem 2.1) and hence geometrically ergodic. Moreover,
Mykland et al. (1995, Section 4.1) have shown that for IMH chains there is always a scheme for
producing minorization conditions and regeneration sequences, and here we use the scheme they
described.

Our simulation study is carried out as follows. For each value of µ, we conduct a pilot study
to calculate âopt, using the method described in Section 3. The pilot study is based on 1000 iid
draws from π1 and a number of regenerations of the IMH Markov chain for π2 that gives a sample
of approximately the same size. Then we run the main study, in which we form d̂âopt (where âopt

is obtained in the pilot study), and also form d̂conv. The main study is 10 times as large as the
pilot study. For each µ, the above is replicated 500 times, and from these replicates we form the
sample variance of the d̂âopt’s, the sample variance of the d̂conv’s, and form the ratio, which we
take as a measure of the efficiency of d̂âopt vs. d̂conv.

Figure 1 gives a plot of the estimate of Var(d̂conv)/Var(d̂âopt) as µ varies over (−3, 3), along
with 95% confidence bands, valid pointwise (the bands are constructed via the delta method ap-
plied to the function f(o, c) = o/c). From the figure we see that, as expected, the efficiency is
about 1 when µ is near 0. But it grows rapidly as µ moves away from 0 in either direction, reach-
ing about 17 when µ is 3 or −3, and it is reasonable to believe that the efficiency is unbounded
as µ→∞ or µ→ −∞. Figure 2 provides a graphical description of the explanation. The figure
gives a plot of [âopt]1, the first component of âopt, as µ varies over (−3, 3). When µ = 0, the two
chains are each iid sequences, and âopt

.
= (.5, .5), so that d̂âopt

.
= d̂conv. But when µ moves away

from 0 in either direction, chain 2 mixes more slowly, and [âopt]1 increases towards 1, so that in
the term (2.2) in our quasi-likelihood function, less weight is given to chain 2, which is why d̂âopt

is more efficient than is d̂conv.
Of course, because the calculation of d̂âopt requires a pilot study, the comparison above could

be viewed as unfair. However, for d̂âopt to perform well all that is required, both in theory and
in practice, is that âopt consistently estimate argmina Var(d̂a), and for this to occur all that is
required is that the size of the pilot study increase to infinity. That is, the size of the pilot study
can increase to infinity arbitrarily slowly when compared to the size of the main study so, asymp-
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Figure 1: Estimated relative efficiency of d̂âopt vs. d̂conv, together with 95% confidence bands.
As µ moves away from 0, the mixing rate of chain 2 slows, and the efficiency of d̂âopt vs. d̂conv

increases. The horizontal line at height 1 serves a reference line.

totically, the amount of time to compute d̂âopt and d̂conv is the same.

4.2 Estimation of the Internal Energy and Specific Heat as Functions of
Temperature in the Ising Model

We consider the Ising model on a c× c square lattice with periodic boundary conditions. That is,
we have a graph (V,E) where V denotes the set of c2 vertices of the lattice, and E denotes the
set of 2c2 edges that connect nearest neighbors on the lattice. Vertices in the first and last rows
are also considered neighbors, as are vertices in the first and last columns, so the graph resides
on the torus. For each vertex i ∈ V , we have a random variable Xi taking on the values 1 and
−1. The random vector X = {Xi, i ∈ V } gives the state of the system, and the state space S
contains 2c

2 states. For x ∈ S, let H(x) = −
∑

i∼j xixj , where the notation i ∼ j signifies that i
and j are nearest neighbors. For each θ ∈ Θ := [0,∞), define a probability distribution pθ on S
by

pθ(x) = z−1
θ exp[−θH(x)], x ∈ S,

where zθ =
∑

x∈S exp[−θH(x)] is the normalizing constant, called the partition function in the
physics literature, and θ = 1/(κT ), where T is the temperature and κ is the Boltzmann constant.
See, e.g., Newman and Barkema (1999, sec. 1.2) for an overview.

Important to physicists are the internal energy of the system, defined by

Iθ = Epθ [H(X)], θ ∈ Θ,

and the specific heat, which is the derivative of the internal energy with respect to temperature,
or equivalently,

Cθ = −κθ2∂Iθ
∂θ

= κθ2
{
Epθ [H

2(X)]−
(
Epθ [H(X)]

)2}
, θ ∈ Θ,
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Figure 2: The points are the medians of the first component of âopt, i.e. the weight assigned to
sample 1 in the term (2.2) in our quasi-likelihood function, over the 500 replications at each µ.
As µ moves away from 0, the weight given to the second (slower mixing) chain decreases to 0.

and interest is focused on how these quantities vary with θ. Because the size of the state space
increases very rapidly as c increases, except for the case c ≤ 5, the quantities above cannot
be evaluated, and MCMC must be used. It is simple to implement a Metropolis-Hastings algo-
rithm that randomly chooses a site, proposes to flip its spin, and accepts this proposal with the
Metropolis-Hastings probability; however this algorithm converges very slowly. Swendsen and
Wang (1987) proposed a data augmentation algorithm in which bond variables are introduced: if
i and j are nearest neighbors and Xi = Xj , then with probability 1− exp(−θ) an edge is placed
between vertices i and j. This partitions the state space into connected components, and entire
components are flipped. This algorithm converges far more rapidly than the single-site updating
algorithm, and it is the algorithm we use here. Mykland et al. (1995, sec. 5.3) developed a sim-
ple minorization condition for the Swendsen-Wang algorithm, and we use it here to produce the
regenerative chains that are needed to estimate the families {Iθ, θ ∈ Θ} and {Cθ, θ ∈ Θ} via the
methods of this paper.

We now consider the problem of estimating the families {Iθ, θ ∈ Θ} and {Cθ, θ ∈ Θ}, and
as we will see, the issue of obtaining standard errors for our estimates is quite important. We are
in the framework of the second of the three classes of problems mentioned in Section 1, and the
two-step procedure given there, described in the present context, is as follows:

Step 1 We choose points θ1, . . . , θk appropriately spread out in the region of Θ of interest,
and for l = 1, . . . , k, we run a Swendsen-Wang chain with invariant distribution pθl for
ρl regenerations. Using these k chains, we form d̂, the estimate of the vector d, where
dl = zθl/zθ1 , l = 2, . . . , k.

Step 2 For each l = 1, . . . , k, we generate a new Swendsen-Wang chain with invariant distri-
bution pθl for Rl regenerations, and we use these new chains, together with the estimate d̂
produced in Step 1, to estimate Iθ and Cθ.
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We now describe the details involved in Step 2. Denote the lth sample (in Step 2) by {X(l)
i , i =

1, . . . , nl}. For each θ ∈ Θ, define gθ(x) = exp[−θH(x)] for x ∈ S. Let

u(x) =
gθ(x)∑k
s=1 gθs(x)

, v(x) = H(x)u(x), and z(x) = H2(x)u(x),

and let

ûn =
k∑
l=1

d̂l
nl

nl∑
i=1

u(X
(l)
i ), v̂n =

k∑
l=1

d̂l
nl

nl∑
i=1

v(X
(l)
i ), and ẑn =

k∑
l=1

d̂l
nl

nl∑
i=1

z(X
(l)
i ).

(These quantities depend on θ, but this dependence is temporarily suppressed in the notation.)
Using El to denote expectation with respect to pθl , we have

Îθ :=
v̂n
ûn

a.s.−→
∑k

l=1 dlEl(v(X))∑k
l=1 dlEl(u(X))

=
(zθ/zθ1)

∑
x∈S H(x)pθ(x)

(zθ/zθ1)
∑

x∈S pθ(x)
= Iθ

as ρl → ∞ and Rl → ∞ for l = 1, . . . , k, where the convergence statement follows from
ergodicity of the Swendsen-Wang chains and the fact that d̂ a.s.−→ d. Similarly, we have

Ĉθ := κθ2

(
ẑn
ûn
−
( v̂n
ûn

)2
)

a.s.−→ Cθ.

Furthermore, Theorem 2 of Tan, Doss and Hobert (2012) deals precisely with the asymptotic
distribution of estimates of the form Îθ and Ĉθ, in the framework of regenerative Markov chains.
This theorem, which relies on Theorem 1 of the present paper, states that if (i) both Stage 1

and Stage 2 chains satisfy A1–A3 of the present paper, (ii) for l = 1, . . . , k Rl/R1 and ρl/ρ1

converge to positive finite constants, and (iii) R1/ρ1 converges to a nonnegative finite constant,
then R1/2

1 (Îθ− Iθ) and R1/2
1 (Ĉθ−Cθ) have asymptotically normal distributions, and the theorem

also provides regeneration-based consistent estimates of the asymptotic variances. These are the
estimates we use in this section.

We will apply the approach described above in two situations. The first involves the Ising
model on a square lattice small enough so that exact calculations can be done. This enables us to
check the performance of our estimators and confidence intervals. The second involves the Ising
model on a larger lattice, where calculations can be done only through Monte Carlo methods.

We first consider the Ising model on a 5× 5 lattice, and we focus on the problem of estimat-
ing Cθ, the specific heat. Figure 3 was created using our methods. The left panel gives a plot of
Ĉθ, together with 95% confidence bands (valid pointwise), and a plot of the exact values. The
right panel gives the standard error estimates for Ĉθ. To create the figure, we used the approach
described above, with k = 5 and (θ1, . . . , θ5) = (.3, .4, .5, .6, .7). For each l = 1, . . . , 5, regen-
erative Swendsen-Wang chains of (approximate) length 10,000 were run for θl, based on which
d̂ and Ŵ from Theorem 1 were calculated. We then ran independent chains for the same five θ
values, for as many iterations, to form estimates Ĉθ on a fine grid of θ values that range from .2 to
1 in increments of .01. The plot in the right panel was obtained from the formula in Theorem 2 of
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Tan et al. (2012), and the exact values of Cθ were obtained using closed-form expressions from
the physics literature.

We mention that Newman and Barkema (1999, sec. 3.7) also considered the problem of esti-
mating the specific heat for the Ising model on a 5 × 5 lattice. They have a plot very similar to
ours, but they produced it by running a separate Swendsen-Wang chain for each θ value on a fine
grid, and each chain is used solely for the θ value under which it was generated. In contrast, our
method requires only k Swendsen-Wang chains, where k is fairly small, and all chains are used
to estimate Cθ for every θ. Here, we have considered a simple instance of the Ising model, the so-
called one-parameter case. It is common to also consider the situation where there is an external
magnetic field, in which case θ has dimension 2, and pθ(x) ∝ exp

(
θ1

∑
i∼j xixj + θ2

∑
i∈V xi

)
.

Running a separate Swendsen-Wang chain for each θ in a fine subgrid in dimension 2 becomes
extremely time consuming, whereas our approach is easily still workable.
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Figure 3: Estimation of the specific heat for the Ising model on a 5 × 5 lattice. Left panel gives
a plot of the point estimates and a plot of the exact values, as θ varies. The two plots are visually
indistinguishable. Also provided are 95% confidence bands. Right panel gives standard errors
for Ĉθ.

In our second example, we consider the Ising model on a 30× 30 lattice, for which exact cal-
culations of physical quantities are prohibitively expensive, and our interest is now on estimating
the internal energy. The left panel of Figure 4 shows a plot of Îθ vs. θ as θ ranges from .35 to 1.5

in increments of .01. To form the plot we carried out the two-step procedure discussed earlier,
with k = 5 and reference points (θ1, . . . , θ5) = (.65, .75, .85, .95, 1.05), and a sample size of
100,000 for each chain in both steps. The left panel also shows 95% bands, valid pointwise, and
the right panel shows the estimated standard errors. From the plot, we can see that the standard
errors are much larger when θ < θ1 = .65 than they are when θ ≥ θ1. The importance sampling
estimates are not stable when we try to extrapolate below the lowest reference θ value, but we
can go well above the highest reference value and still get accurate estimates. It is our ability
to estimate SE’s through regeneration that makes it possible for us to determine the range of θ’s
for which we have reliable estimates. In fact, this range depends in a complicated way on the
reference points and the sample sizes, and even for the relatively simple case where k = 1, the
range is not simply an interval centered at θ1.
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Figure 4: Estimation of the internal energy for the Ising model on a 30 × 30 lattice. Left panel
gives estimated values, together with 95% confidence bands. Right panel gives the corresponding
standard error estimates.

Appendix: Proof of Theorem 1

Proof of Consistency of d̂
We first work in the ζ domain, and at the very end switch to the d domain. As mentioned earlier,
in the standard textbook situation in which we have X1, . . . , Xn

iid∼ pθ0 where θ0 ∈ Θ, ln(θ) is the
log likelihood andQ(θ) = Eθ0(l1(θ)), the classical proof of consistency (Wald, 1949) is based on
the observation that Q(θ) is maximized at θ = θ0, and that for each fixed θ, ln(θ)

a.s.−→ Q(θ). The
convergence may be non-uniform, and care needs to be exercised in showing that the maximizer
of ln(θ) converges to the maximizer of Q(θ). The present situation is simpler in that the log
likelihood and its expected value are twice differentiable and concave, but is more complicated
in that we have multiple sequences, they are not iid, and we have a non-identifiability issue, so
that maximization is carried out subject to a constraint.

We will write `ρ instead of `n to remind ourselves that the ρl’s are given and the nl’s are
determined by these ρl’s. Also, we will write `ρ(X, ζ) instead of `ρ(ζ) when we need to note
the dependence of `ρ(ζ) onX , whereX =

(
X

(1)
1 , . . . , X

(1)
n1 , . . . , X

(k)
1 , . . . , X

(k)
nk

)
. We define the

(scaled) expected log quasi-likelihood by

λ(ζ) =
k∑
l=1

alEπl
(
log[pl(X, ζ)]

)
.

As ρl →∞, we have nl →∞, so n−1
l

∑nl
i=1 log

(
pl(X

(l)
i , ζ)

) a.s.−→ Eπl
(
log[pl(X, ζ)]

)
, and so

n−1`ρ(X, ζ)
a.s.−→ λ(ζ) for all ζ.

The structure of our proof is similar to that of Theorem 1 of Geyer (1994), and the outline of
our proof is as follows. First, define S = {ζ : ζ>1k = 0}, and recall that ζ̂ is defined to be a
maximizer of `ρ(X, ζ) satisfying ζ̂ ∈ S.

1. We will show that for everyX , `ρ(X, ζ) is everywhere twice differentiable and concave in ζ.
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2. We will show that λ(ζ) is finite, everywhere twice differentiable, and concave. We further
show that its Hessian matrix is semi-negative definite, and that its only null eigenvector is 1k.

3. We will show that ∇λ(ζ0) = 0.

4. We will note that the two steps above imply that ζ0 is the unique maximizer of λ subject to
the condition ζ0 ∈ S.

5. We will argue that with probability one, for every ζ, ∇2`ρ(X, ζ) is semi-negative definite,
and 1k is its only null eigenvector. This will show that ζ̂ is the unique maximizer of `ρ(X, ζ)

subject to ζ̂ ∈ S.

6. We will conclude that the convergence of `ρ(X, ζ) to λ(ζ) implies convergence of their max-
imizers that reside in S, that is, ζ̂ a.s.−→ ζ0.

We now provide the details.

1. The differentiability is immediate from the definition of `ρ (see (2.10)). To show concavity, it
is sufficient to show that for every x, log

(
pl(x, ζ)

)
is concave in ζ. Now

∂2 log
(
pl(x, ζ)

)
∂ζ2 = −(diag(p)− pp>), (A1)

where p =
(
p1(x, ζ), . . . , pk(x, ζ)

)>. The matrix inside the parentheses on the right side
of (A1) is the covariance matrix for the multinomial distribution with parameter p, so this
matrix is positive semi-definite.

2. First, λ(ζ) is finite because λ(ζ) ≤ 0, and

−λ(ζ) =
k∑
l=1

alEπl

[
log

(
1

pl(X, ζ)

)]

=
k∑
l=1

alEπl

[
log

(
1 +

∑
s 6=l

νs(X)

νl(X)
eζs−ζl

)]

≤
k∑
l=1

alEπl

(∑
s 6=l

νs(X)

νl(X)
eζs−ζl

)
(log(1 + a) < a for a > 0)

≤
k∑
l=1

al
∑
s 6=l

eζs−ζl
∫
νs(x)

νl(x)
πl(x)µ(dx)

=
k∑
l=1

al
∑
s 6=l

eζs−ζl
ms

ml

∫
πs(x)

πl(x)
πl(x)µ(dx) <∞.

We now obtain the first and second derivatives of λ. By a standard argument involving the
dominated convergence theorem, we can interchange the order of differentiation and inte-
gration. (If v is the vector of length k with a 1 in the rth position and 0’s everywhere else,
then for any x, any ζ, and any l ∈ {1, . . . , k},

[
log
(
pl(x, ζ + v/m)

)
− log

(
pl(x, ζ)

)]
m =
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∂ log
(
pl(x, ζ∗)

)
/∂ζr, where ζ∗ is between ζ + v/m and ζ, and this partial derivative is uni-

formly bounded between −1 and 1.) So for r = 1, . . . , k, we have

∂λ(ζ)

∂ζr
=

k∑
l=1

alEπl

(
∂ log

(
pl(X, ζ)

)
∂ζr

)
= ar −

k∑
l=1

alEπl
(
pr(X, ζ)

)
. (A2)

Consider the integrand on the right side of (A2), i.e. pr(X, ζ). Its gradient is given by
∂pr/∂ζr = pr − p2

r and ∂pr/∂ζl = −prpl for l 6= r, and these derivatives are uniformly
bounded in absolute value by 1. Hence again by the dominated convergence theorem, we can
interchange the order of differentiation and integration, and doing this gives

−∂
2λ(ζ)

∂ζ2
r

=
k∑
l=1

alEπl

(
∂pr(X, ζ)

∂ζr

)
=

k∑
l=1

alEπl [pr(X, ζ)− p2
r(X, ζ)]

−∂
2λ(ζ)

∂ζs∂ζr
=

k∑
l=1

alEπl

(
∂pr(X, ζ)

∂ζs

)
=

k∑
l=1

alEπl [−pr(X, ζ)ps(X, ζ)] for s 6= r.

(A3)

Define the expectation operator EP =
∑k

l=1 alEl. From (A3) we have −∇2λ(ζ) = EP (J),
where J = diag(p)− pp>, and as before p =

(
p1(X, ζ), . . . , pk(X, ζ)

)>. As before, J is the
covariance of the multinomial, so is positive semi-definite, and therefore so is EP (J).

We now determine the null eigenvectors of ∇2λ(ζ) (which is −EP (J)). If ∇2λ(ζ)u = 0,
then u>[∇2λ(ζ)]u = 0, so EP (u>Ju) = 0. Since J is positive semi-definite, it has a square
root, J1/2. Hence EP (‖J1/2u‖2) = 0, which implies Ju = 0 [P ]-a.e. The condition Ju = 0

[P ]-a.e. is expressed as

pr(X, ζ)
(∑k

l=1 pl(X, ζ)ul − ur
)

= 0 [P ]-a.e. for r = 1, . . . , k, (A4)

and under our assumption that ν1, . . . , νk are mutually absolutely continuous, (A4) implies
that ur =

∑k
l=1 pl(X, ζ)ul for r = 1, . . . , k. So u1 = · · · = uk, i.e. u ∝ 1k.

3. To show that∇λ(ζ0) = 0, we write

∂λ(ζ)

∂ζr

∣∣∣∣
ζ0

= ar −
k∑
l=1

al

∫
νr(x)ar/mr∑k
s=1 νs(x)as/ms

πl(x)µ(dx)

= ar −
∫ ∑k

l=1 alπl(x)∑k
s=1 asνs(x)/ms

νr(x)ar/mr µ(dx)

= ar − ar
∫
πr(x)µ(dx) = 0.

4. For any ζ satisfying ζ>1k = 0, we may write

λ(ζ) = λ(ζ0) + (ζ − ζ0)
>∇λ(ζ0) +

1

2
(ζ − ζ0)

>∇2λ(ζ∗)(ζ − ζ0)

= λ(ζ0) +
1

2
(ζ − ζ0)

>∇2λ(ζ∗)(ζ − ζ0),
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where ζ∗ is between ζ and ζ0. If ζ 6= ζ0, i.e. ζ − ζ0 6= 0, then since (ζ − ζ0)
>1k = 0, ζ − ζ0

cannot be a scalar multiple of 1k. Hence by Step 2, (ζ − ζ0)
>∇2λ(ζ∗)(ζ − ζ0) < 0.

5. Clearly ∇`ρ(X, ζ̂) = 0. The proof that (i) ∇2`ρ(X, ζ) is semi-negative definite, (ii) the only
null eigenvector of ∇2`ρ(X, ζ) is 1k, and (iii) ζ̂ is the unique maximizer of `ρ(X, ζ) subject
to the constraint ζ ∈ S, is essentially identical to the proof of these assertions for λ(ζ).

6. Since n−1`ρ(X, ζ)
a.s.−→ λ(ζ) for each ζ, a.s. convergence occurs on a dense subset of S.

Also, the functions involved are all concave in the entire space of ζ’s, hence are concave in S.
Therefore, we have a.s. uniform convergence of n−1`ρ(X, ζ) to λ(ζ) on compact subsets of
S. Under concavity, this is enough to imply argmaxζ∈S `ρ(X, ζ)

a.s.−→ argmaxζ∈S λ(ζ), i.e.
ζ̂

a.s.−→ ζ0.

Finally, to see that d̂ a.s.−→ d, we write d̂ − d = g(ζ̂) − g(ζ0) = ∇g(ζ∗)
>(ζ̂ − ζ0), where ζ∗

is between ζ̂ and ζ0. The function g actually depends on a(ρ), so depends on ρ, but the gradient
∇g(ζ∗) is bounded for large ρ because ζ̂ a.s.−→ ζ0 and a(ρ) → α. Therefore d̂ a.s.−→ d.

Proof of Regeneration-Based CLT for d̂
We begin by considering ρ

1/2
1 (ζ̂ − ζ0). As in the classical proof of asymptotic normality of

maximum likelihood estimators, we expand∇`ρ at ζ̂ around ζ0, and using the appropriate scaling
factor, we get

−ρ
1/2
1

n

(
∇`ρ(ζ̂)−∇`ρ(ζ0)

)
= − 1

n
∇2`ρ(ζ∗)ρ

1/2
1 (ζ̂ − ζ0), (A5)

where ζ∗ is between ζ̂ and ζ0. Consider the left side of (A5), which is just ρ1/2
1 n−1∇`ρ(ζ0), since

∇`ρ(ζ̂) = 0. There are several nontrivial components to the proof, so we first give an outline.

1. We show that each element of the vector n−1∇`ρ(ζ0) can be represented as a linear combina-
tion of mean 0 averages of functions of the k chains plus a vanishingly small term.

2. Using Step 1 above, we obtain a regeneration-based CLT for the scaled score vector, via a
considerably more involved version of the method we used in Section 2.1: we show that
ρ

1/2
1 n−1∇`ρ(ζ0)

d→ N (0,Ω), where Ω is given by (2.16).

3. We argue that −n−1∇2`ρ(ζ∗)
a.s.−→ B and that

(
−n−1∇2`ρ(ζ∗)

)† a.s.−→ B†, where B is defined
in (2.12), using ideas in Geyer (1994).

4. We conclude that ρ1/2
1 (ζ̂ − ζ0)

d→ N (0, B†ΩB†).

5. We note the relationships d = g(ζ0) and d̂ = g(ζ̂), where g was defined by (2.18), and apply
the delta method to obtain the desired result.

We now provide the details.
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1. We start by considering n−1∇`ρ(ζ0). For r = 1, . . . , k, we have

∂`ρ(ζ0)

∂ζr
= wr

nr∑
i=1

(
1− pr(X(r)

i , ζ0)
)
−

k∑
l=1
l 6=r

wl

nl∑
i=1

pr(X
(l)
i , ζ0)

= wr

nr∑
i=1

(
1− pr(X(r)

i , ζ0)−
[
1− Eπr

(
pr(X, ζ0)

)])
−

k∑
l=1
l 6=r

wl

nl∑
i=1

[
pr(X

(l)
i , ζ0)− Eπl

(
pr(X, ζ0)

)]
+ e,

(A6)

where

e = wr

nr∑
i=1

[
1− Eπr

(
pr(X, ζ0)

)]
−

k∑
l=1
l 6=r

wl

nl∑
i=1

Eπl
(
pr(X, ζ0)

)
. (A7)

We claim that e = 0. To see this, note that from (A7) we have

e = wrnr −
k∑
l=1

wlnlEπl
(
pr(X, ζ0)

)
= wrnr −

k∑
l=1

wlnl
ar
al
Eπr
(
pl(X, ζ0)

)
. (A8)

The last equality in (A8) holds because

Eπl
(
pr(X, ζ0)

)
=

∫
νr(x)e[ζ0]r∑k
s=1 νs(x)e[ζ0]s

πl(x)µ(dx) =

∫
νr(x)ar/mr∑k
s=1 νs(x)as/ms

πl(x)µ(dx)

=

∫
νl(x)ar/ml∑k
s=1 νs(x)as/ms

πr(x)µ(dx) =
ar
al
Eπr
(
pl(X, ζ0)

)
.

Therefore, using the fact that wlnlar/al = wrnr, we get

e = wrnr − wrnr
∑k

l=1Eπr
(
pl(X, ζ0)

)
= wrnr − wrnrEπr

(∑k
l=1 pl(X, ζ0)

)
= 0.

We summarize: Because e = 0, (A6) can be used to view n−1∂`ρ(ζ0)/∂ζr as a linear com-
bination of mean 0 averages of functions of the k chains. To express these averages in terms
of iid quantities, we first recall the definitions of y(r,l)

i (a), Y (r,l)
t (a), Ȳ (r,l)(a), and T̄ (l), given
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in (2.14) and (2.15), and multiplying by the scaling factor ρ1/2
1 n−1, we rewrite (A6) as

ρ
1/2
1

n

∂`ρ(ζ0)

∂ζr
= −ρ

1/2
1

n

k∑
l=1

wl

nl∑
i=1

[
pr(X

(l)
i , ζ0)− Eπl

(
pr(X, ζ0)

)]
= −

k∑
l=1

ρ
1/2
1 nl
n

wl
1

nl

ρl∑
t=1

Y
(r,l)
t (a)

= −
k∑
l=1

ρ
1/2
1 nl
n

wl

∑ρl
t=1 Y

(r,l)
t (a)∑ρl

t=1 T
(l)
t

= −
k∑
l=1

[(ρ1

ρl

)1/2nl
n
wl

][
ρ

1/2
l

Ȳ (r,l)(a)

T̄ (l)

]

= −
k∑
l=1

[(ρ1

ρl

)1/2

al

][
ρ

1/2
l

Ȳ (r,l)(a)

T̄ (l)

]
. (A9)

2. We now apply a more complex and more rigorous version of the argument we used in Sec-
tion 2.1. We note the following: (i) the k chains are geometrically ergodic by Assumption A2;
(ii) since pr(x, ζ) ∈ (0, 1) for all x and all ζ, Eπl

(
|y(r,l)

1 (a)|2+ε
)
< ∞ for some ε > 0 (in

fact for any ε > 0); and (iii) by (2.14) the mean of Y (r,l)
t (a) is 0. The usual CLT for iid se-

quences does not apply to the sequence Y (r,l)
1 (a), . . . , Y

(r,l)
ρl (a) because a = a(ρ) is allowed to

change with ρ, so the distribution of Y (r,l)
t (a) changes with ρ. Since r and l are now fixed and

play no important role, while the dependence of a on ρ now needs to be noted we will write
yi(a

(ρ)) instead of y(r,l)
i (a), Yt(a(ρ)) instead of Y (r,l)

t (a), etc. We really have a triangular array
of random variables, and we will apply the Lindeberg-Feller version of the CLT.

We first need to show that E
(
[Yt(a

(ρ))]2
)
<∞. (This condition is nontrivial because Yt(a(ρ))

is the sum of a random number of terms.) Note that since pr(x, ζ) ∈ (0, 1), |yi(a(ρ))| ≤ 1, and
therefore,

|Yt(a(ρ))| ≤ T
(l)
t . (A10)

Theorem 2 of Hobert, Jones, Presnell and Rosenthal (2002) states that E
[
(T

(l)
t )2

]
<∞ under

geometric ergodicity. So E
(
[Yt(a

(ρ))]2
)
< ∞, and we may form the triangular array whose

ρth
l row consists of the variables U1(a

(ρ)), . . . , Uρl(a
(ρ)), where

Ut(a
(ρ)) =

Yt(a
(ρ))(∑ρl

s=1 Var[Ys(a(ρ))]
)1/2 .

Clearly, E[Ut(a
(ρ))] = 0 and

∑ρl
t=1 Var[Ut(a

(ρ))] = 1.

The Lindeberg Condition is that for every η > 0,

ρl∑
t=1

E
(
[Ut(a

(ρ))]2I(|Ut(a(ρ))| > η)
) a.s.−→ 0 as ρl →∞,
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and this is equivalent to the condition

E

[
[Y1(a

(ρ))]2

Var[Y1(a(ρ))]
I

(
|Y1(a

(ρ))|(
ρl Var[Y1(a(ρ))]

)1/2 > η

)]
→ 0 as ρl →∞. (A11)

To see (A11) note that as ρl →∞, by the assumption that a(ρ) → α where all the components
of α are strictly positive and dominated convergence, we have

Y1(a
(ρ))

a.s.−→ Y1(α).

By (A10), we have [Yt(a
(ρ))]2 ≤ (T

(l)
t )2, and E

[
(T

(l)
t )2

]
< ∞ by Theorem 2 of Hobert

et al. (2002). Therefore, E
(
[Yt(a

(ρ))]2
)
→ E

(
[Yt(α)]2

)
by (A10) and dominated conver-

gence, and we also have E[Yt(a
(ρ))]→ E[Yt(α)], so that Var[Yt(a

(ρ))]→ Var[Yt(α)]. Since
I
[
|Y1(a

(ρ))| >
(
ρl Var[Y1(a

(ρ))]
)1/2

η
]

= 0 for large ρ, (A11) follows by dominated conver-
gence.

The Lindeberg-Feller theorem (together with the fact that T̄ (l) a.s.−→ E(T
(l)
1 )) now states that

the term in the second set of brackets in (A9) has an asymptotic normal distribution, with mean
0, and variance E

(
[Y

(r,l)
1 (α)]2

)/(
E(T

(l)
1 )
)2. The term in the first set of brackets converges to

αlc
−1/2
l . Since the k chains are independent, we conclude that

ρ
1/2
1

n

∂`ρ(ζ0)

∂ζr

d→ N (0,Ωrr) as ρ1 →∞,

where Ω was defined in (2.16). But by the Cramér-Wold Theorem, we obtain the more general
statement involving the asymptotic distribution of the entire gradient vector. The argument is
standard and gives

ρ
1/2
1

n
∇`ρ(ζ0)

d→ N(0,Ω) as ρ1 →∞.

3. Now, referring to (A5), denote the matrix −n−1∇2`ρ(ζ∗) by Bρ. We have

[Bρ]rr =
k∑
l=1

al

(
1

nl

nl∑
i=1

pr(X
(l)
i , ζ∗)

[
1− pr(X(l)

i , ζ∗)
])
, r = 1, . . . , k,

[Bρ]rs = −
k∑
l=1

al

(
1

nl

nl∑
i=1

pr(X
(l)
i , ζ∗)ps(X

(l)
i , ζ∗)

)
, r, s = 1, . . . , k, r 6= s,

(A12)

and for later use also define B(α)
ρ by

[B(α)
ρ ]rr =

k∑
l=1

al

(
1

nl

nl∑
i=1

pr(X
(l)
i , ζα)

[
1− pr(X(l)

i , ζα)
])
, r = 1, . . . , k,

[B(α)
ρ ]rs = −

k∑
l=1

al

(
1

nl

nl∑
i=1

pr(X
(l)
i , ζα)ps(X

(l)
i , ζα)

)
, r, s = 1, . . . , k, r 6= s.

(A13)
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From (A12) we can check that
Bρ1k = 0, (A14)

and because 1>k ζ̂ = 0 and 1>k ζ0 = 0, we have(
Bρ
1>k√
k

)
ρ

1/2
1 (ζ̂ − ζ0) =

(
ρ
1/2
1

n
∇`ρ(ζ0)

0

)
.

Hence (
B†ρ,

1k√
k

)(Bρ
1>k√
k

)
ρ

1/2
1 (ζ̂ − ζ0) =

(
B†ρ,

1k√
k

)(ρ
1/2
1

n
∇`ρ(ζ0)

0

)
. (A15)

Now from (A14) and the spectral decomposition of the symmetric matrixBρ, we haveB†ρBρ =

Ik − 1k1
>
k /k, so (A15) becomes

ρ
1/2
1 (ζ̂ − ζ0) = B†ρ

ρ
1/2
1

n
∇`ρ(ζ0).

We now study the asymptotic behavior of B†ρ. From (A13), the fact that wl = aln/nl by
definition, and ergodicity, we have

[B(α)
ρ ]rr =

k∑
l=1

al

(
1

nl

nl∑
i=1

pr(X
(l)
i , ζ0)

[
1− pr(X(l)

i , ζ0)
]) a.s.−→ Brr,

[B(α)
ρ ]rs = −

k∑
l=1

al

(
1

nl

nl∑
i=1

pr(X
(l)
i , ζ0)ps(X

(l)
i , ζ0)

)
a.s.−→ Brs, r 6= s.

The first part of Theorem 1 states that ζ̂ − ζ0
a.s.−→ 0 as ρ1 → ∞. Now since all partial

derivatives (with respect to ζ) of terms of the form pr(x, ζ)(1 − pr(x, ζ)) or pr(x, ζ)ps(x, ζ)

are uniformly bounded by 1 in absolute value, we see that [Bρ]rs− [B
(α)
ρ ]rs = O(‖ζ∗ − ζα‖1)

a.s. for all r and s, and conclude that Bρ
a.s.−→ B. (Here, ‖v‖1 denotes the L1 norm of a vector

v ∈ Rk.) Similarly, [B̂]rs − [B
(α)
ρ ]rs = O(‖ζ̂ − ζα‖1) a.s. for all r and s, so B̂

a.s.−→ B.
Furthermore, from the spectral decomposition of Bρ and B, and the fact that Bρ1k = 0 and
B1k = 0, we have

B†ρ =
(
Bρ +

1

k
1k1
>
k

)−1

− 1

k
1k1
>
k and B† =

(
B +

1

k
1k1
>
k

)−1

− 1

k
1k1
>
k , (A16)

showing that B†ρ
a.s.−→ B†.

4. The convergence statement ρ1/2
1 (ζ̂ − ζ0)

d→ N (0, B†ΩB†) now follows immediately.

5. Finally, we write ρ1/2
1 (d̂ − d) = ρ

1/2
1 (g(ζ̂) − g(ζ0)) = ∇g(ζ∗)

>ρ
1/2
1 (ζ̂ − ζ0), where ζ∗ is

between ζ̂ and ζ0. Since∇g(ζ∗)
> a.s.−→ D, the desired result (2.20) now follows.
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Proof of Consistency of the Estimate of the Asymptotic Covariance Matrix
In the proof of the first part of Theorem 1, we showed that ζ̂ a.s.−→ ζ0 and d̂ a.s.−→ d. Hence,
D̂

a.s.−→ D. In the proof of the second part of Theorem 1 we showed that B̂ a.s.−→ B. Using the
spectral representation of B̂ and of B (see (A16)), we see that this entails B̂† a.s.−→ B†.

To complete the proof, we need to show that Ω̂
a.s.−→ Ω. Consider the expressions for Ω and

Ω̂ given by (2.16) and (2.17), respectively. Since a → α and T̄ (l) a.s.−→ E(T
(l)
1 ), to show that

Ω̂
a.s.−→ Ω, we need only show that

1

ρl

ρl∑
t=1

(
Z

(r,l)
t − µ̂(l)

r T
(l)
t

)(
Z

(s,l)
t − µ̂(l)

r T
(l)
t

) a.s.−→ E
(
Y

(r,l)
1 (α)Y

(s,l)
1 (α)

)
. (A17)

Now, the left side of (A17) is an average of quantities that involve Z(r,l)
t and µ̂(l)

r , which them-
selves are a sum and an average, respectively, of a function that involves the random quantity ζ̂.
At the risk of making the notation more cumbersome, we will now write Z(r,l)

t (ζ̂) instead of Z(r,l)
t

and µ̂(l)
r (ζ̂) instead of µ̂(l)

r . Our plan is to introduce Ω
(α)
ρ , a version of Ω̂ in which ζ̂ is replaced

by the non-random quantity ζα, and show that (i) Ω
(α)
ρ

a.s.−→ Ω and (ii) Ω̂ − Ω
(α)
ρ

a.s.−→ 0. To this
end, let

Z
(r,l)
t (ζα) =

τ
(l)
t −1∑
i=τ

(l)
t−1

pr(X
(l)
i , ζα) and µ̂(l)

r (ζα) =

∑nl
i=1 pr(X

(l)
i , ζα)

nl
,

and note that by definition

Z
(r,l)
t (ζ̂) =

τ
(l)
t −1∑
i=τ

(l)
t−1

pr(X
(l)
i , ζ̂) and µ̂(l)

r (ζ̂) =

∑nl
i=1 pr(X

(l)
i , ζ̂)

nl
.

Define the k × k matrices Ψ, Ψ̂, and Ψ
(α)
ρ by

Ψrs = E
[{
Z

(r,l)
1 (ζα)− T (l)

1 Eπl [pr(X, ζα)]
}{
Z

(s,l)
1 (ζα)− T (l)

1 Eπl [ps(X, ζα)]
}]
,

Ψ̂rs =
1

ρl

ρl∑
t=1

(
Z

(r,l)
t (ζ̂)− T (l)

t µ̂(l)
r (ζ̂)

)(
Z

(s,l)
t (ζ̂)− T (l)

t µ̂(l)
s (ζ̂)

)
,

[Ψ(α)
ρ ]rs =

1

ρl

ρl∑
t=1

(
Z

(r,l)
t (ζα)− T (l)

t µ̂(l)
r (ζα)

)(
Z

(s,l)
t (ζα)− T (l)

t µ̂(l)
s (ζα)

)
.

Note that Ψrs is simply the right side of (A17). Here, Ψrs is the population-level quantity (which
we wish to estimate), Ψ̂rs is the empirical estimate of this quantity, and [Ψ

(α)
ρ ]rs is an “interme-

diate” or bridging quantity, used only in our proof. We will show that (i) Ψ
(α)
ρ

a.s.−→ Ψ and (ii)
Ψ̂−Ψ

(α)
ρ

a.s.−→ 0.
To show that Ψ

(α)
ρ

a.s.−→ Ψ, we first express Ψ̂rs as a sum of four averages. That the four
averages converge to their respective population counterparts follows from the ergodic theorem,
together with the fact that E

[
(T

(l)
1 )2

]
<∞.
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To show that Ψ̂rs− [Ψ
(α)
ρ ]rs

a.s.−→ 0, we express Ψ̂rs− [Ψ
(α)
ρ ]rs as the sum of four differences of

averages, and show that each of these converges almost surely to 0. Consider the first difference,
which is

D1 :=
1

ρl

ρl∑
t=1

[
Z

(r,l)
t (ζ̂)Z

(s,l)
t (ζ̂)− Z(r,l)

t (ζα)Z
(s,l)
t (ζα)

]
. (A18)

The expression inside the brackets in (A18) is equal to

D1t :=

τ
(l)
t −1∑
i=τ

(l)
t−1

τ
(l)
t −1∑
j=τ

(l)
t−1

[
pr(X

(l)
i , ζ̂)ps(X

(l)
j , ζ̂)− pr(X(l)

i , ζα)ps(X
(l)
j , ζα)

]
, (A19)

and because all partial derivatives with respect to ζ of functions of the form pr(x, ζ)ps(y, ζ)

are uniformly bounded by 1 in absolute value, the expression inside the brackets in (A19) is
bounded by ‖ζ̂ − ζα‖1. Since there are (T

(l)
t )2 summands in the double sum in (A19), |D1t| <

(T
(l)
t )2‖ζ̂ − ζα‖1, and from the fact that E

[
(T

(l)
1 )2

]
<∞ we now see that D1

a.s.−→ 0.
The second difference is

D2 :=
1

ρl

ρl∑
t=1

[
Z

(r,l)
t (ζ̂)T

(l)
t µ̂(l)

s (ζ̂)− Z(r,l)
t (ζα)T

(l)
t µ̂(l)

s (ζα)
]
. (A20)

The expression inside the brackets in (A20)

D2t := T
(l)
t

1

nl

τ
(l)
t −1∑
i=τ

(l)
t−1

nl∑
j=1

[
pr(X

(l)
i , ζ̂)ps(X

(l)
j , ζ̂)− pr(X(l)

i , ζα)ps(X
(l)
j , ζα)

]
,

and reasoning as we did for the case of the first difference, we have |D2t| < T
(l)
t · T

(l)
t ‖ζ̂ − ζα‖1,

which implies that D2
a.s.−→ 0. The third difference is handled in a similar way.

The fourth difference is

D4 :=
1

ρl

ρl∑
t=1

[
(T

(l)
t )2µ̂(l)

r (ζ̂)µ̂(l)
s (ζ̂)− (T

(l)
t )2µ̂(l)

r (ζα)µ̂(l)
s (ζα)

]
. (A21)

The expression inside the brackets in (A21) is

D4t := (T
(l)
t )2 1

n2
l

nl∑
i=1

nl∑
j=1

[
pr(X

(l)
i , ζ̂)ps(X

(l)
j , ζ̂)− pr(X(l)

i , ζα)ps(X
(l)
j , ζα)

]
,

and we have |D4t| < (T
(l)
t )2‖ζ̂ − ζα‖1, from which we conclude that D4

a.s.−→ 0.
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