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Abstract

In meta-analysis there is an increasing trend to explicitly acknowledge the presence of
study variability through random effects models. That is, one assumes that for each study,
there is a study-specific effect and one is observing an estimate of this latent variable. In
a random effects model, one assumes that these study-specific effects come from some
distribution, and one can estimate the parameters of this distribution, as well as the study-
specific effects themselves. This distribution is most often modelled through a parametric
family, usually a family of normal distributions. The advantage of using a normal dis-
tribution is that the mean parameter plays an important role, and much of the focus is
on determining whether or not this mean is0. For example, it may be easier to justify
funding further studies if it is determined that this mean is not0. Typically, this normality
assumption is made for the sake of convenience, rather than from some theoretical justifi-
cation, and may not actually hold. We present a Bayesian model in which the distribution
of the study-specific effects is modelled through a certain class of nonparametric priors.
These priors can be designed to concentrate most of their mass around the family of nor-
mal distributions, but still allow for any other distribution. The priors involve a univariate
parameter that plays the role of the mean parameter in the normal model, and they give
rise to robust inference about this parameter. We present a Markov chain algorithm for
estimating the posterior distributions under the model. Finally, we give two illustrations
of the use of the model.



1 Introduction

The following situation arises frequently in medical studies. Each ofm centers reports the
outcome of a study that investigates the same medical issue, which for the sake of concreteness
we will think of as being a comparison between a new and an old treatment. The results are
inconsistent, with some studies being favorable to the new treatment, while others indicate
less promise, and one would like to arrive at an overall conclusion regarding the benefits of
the new treatment.

Early work in meta-analysis involved pooling of effect-size estimates or combining ofp-
values. However, because the centers may differ in their patient pool (e.g. overall health level,
age, genetic makeup) or the quality of the health care they provide, it is now widely recognized
that it is important to explicitly deal with the heterogeneity of the studies through random
effects models, in which for each centeri there is a center-specific “true effect,” represented
by a parameterψi.

Suppose that for eachi, centeri gathers dataDi from a distributionPi(ψi). This distri-
bution depends onψi and also on other quantities, for example the sample size as well as
nuisance parameters specific to theith center. For instance,ψi might be the regression coeffi-
cient for the indicator of treatment in a Cox model, andDi is the estimate of this parameter. As
another example,ψi might be the ratio of the survival probabilities at a fixed time for the new
and old treatments, andDi is a ratio of estimates of survival probabilities based on censored
data. A third example, which is very common in epidemiological studies, is one in whichψi
is the odds ratio arising in case-control studies, andDi is either an adjusted odds ratio based
on a logistic regression model that involves relevant covariates, or simply the usual odds ratio
based on a2× 2 table.

A very commonly used random effects model for dealing with this kind of situation is the
following:

Conditional onψi, Di
ind∼ N (ψi, σ

2
i ), i = 1, . . . ,m (1.1a)

ψi
iid∼ N (µ, τ 2), i = 1, . . . ,m (1.1b)

In (1.1b),µ andτ are unknown parameters. (Theσi’s are also unknown, but we will usually
have estimateŝσi along with theDi’s, and estimation of theσi’s is secondary. This is discussed
further in Section 2).

Model (1.1) has been considered extensively in the meta-analysis literature, with much of
the work focused on the case whereψi is the difference between two binomial probabilities or
an odds ratio based on two binomial probabilities. In the frequentist setting, the classical paper
by DerSimonian and Laird (1986) gives formulas for the maximum likelihood estimates ofµ
andτ , and a test for the null hypothesis thatµ = 0. In a Bayesian analysis, a joint prior is put
on the pair(µ, τ). Bayesian approaches are developed in a number of papers, including Skene
and Wakefield (1990), DuMouchel (1990), Morris and Normand (1992), Carlin (1992), and
Smith et al. (1995). As is discussed in these papers, a key advantage of the Bayesian approach
is that inference concerning the center-specific effectsψi is carried out in a natural manner
through consideration of the posterior distributions of these parameters. (When Markov chain
Monte Carlo is used, estimates of these posterior distributions typically arise as part of the
output. From the frequentist perspective, estimation of the study-specific effectsψi is much
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more difficult. An important application arises in small area estimation; see Ghosh and Rao
(1994) for a review.)

The approximation ofPi(ψi) by a normal distribution in (1.1a) is typically supported by
some theoretical result, for example the asymptotic normality of maximum likelihood esti-
mates. By contrast, the normality statement in (1.1b) is a modelling assumption, which gen-
erally is made for the sake of convenience and does not have any theoretical justification. One
would like to replace (1.1) with a model of the following sort:

Conditional onψi, Di
ind∼ N (ψi, σ

2
i ), i = 1, . . . ,m (1.2a)

ψi
iid∼ F, i = 1, . . . ,m (1.2b)

F ∼ π, (1.2c)

whereπ is a “nonparametric prior.”
This paper is motivated by a situation we recently encountered (Burr et al. 2003), in which

we considered12 papers appearing in medical journals, each of which reported on a case-
control study that aimed to determine whether or not the presence of a certain genetic trait was
associated with an increased risk of coronary heart disease. Each study considered a group
of individuals with coronary heart disease and another group with no history of heart disease.
The proportion having the genetic trait in each group was noted and an odds ratio calculated.
The studies gave rather inconsistent results (p-values for the two-sided test that the log odds
ratio is0 ranged from.005 to .999, and the reported log odds ratios themselves ranged from
+1.06 to−.38), giving rise to sharply conflicting opinions on whether or not there could exist
an association between the genetic trait and susceptibility to heart disease. It was clear that the
studies had different study-specific effects, and it appeared that these did not follow a normal
distribution, so that it was more appropriate to use a model of the sort (1.2) than a model based
on (1.1). In our analysis, in the terminology of Model (1.1), the issue of main interest was not
estimation of the center-specificψi’s, but rather resolving the basic question of whether the
overall meanµ is different from0, since this would determine whether or not it is justified to
carry out further studies.

To deal with this issue when considering a model of the form (1.2), it is necessary that
the priorπ in (1.2c) involve a univariate parameter that can play a role analogous to that ofµ
in (1.1b). The purpose of this paper is to present a simple such model based on mixtures of
“conditional Dirichlet processes.” The paper is organized as follows. In Section 2, we review
a standard model based on mixtures of Dirichlet processes and explain its limitations in the
meta-analysis setting we have in mind. In Section 3 we present the model based on mixtures
of conditional Dirichlet processes, explain its rationale, and describe a Markov chain Monte
Carlo algorithm for estimating the posterior distribution. We also discuss the connection be-
tween the posterior distributions under this model and the standard model. Section 4 gives
two examples that illustrate various issues. The Appendix gives a proof of a likelihood ratio
formula stated in Section 3.

2 A Nonparametric Bayesian Model for Random Effects

In a Bayesian version of Model (1.1) where a prior is put on the pair(µ, τ), the most common
choice is the “normal / inverse gamma” prior (see e.g. Berger (1985, p. 288), and also the
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description in (2.1) below), which is conjugate to the familyN (µ, τ 2). For the problem where
theψi’s are actually observed, the posterior distribution of(µ, τ) is available in closed form.
In the present situation in which theψi’s are latent variables on which we have only partial
information, there is no closed form expression for the posterior, although it is very easy to
write a MCMC algorithm to estimate this posterior, for example inBUGS(Spiegelhalter et al.
1996).

A convenient choice for a nonparametric Bayesian version of this is a model based on
mixtures of Dirichlet processes (Antoniak 1974), and before proceeding, we give a brief re-
view of this class of priors. LetHθ; θ ∈ Θ ⊂ Rk be a parametric family of distributions
on the real line, and letλ be a distribution onΘ. SupposeMθ > 0 for eachθ, and define
αθ = MθHθ. If θ is chosen fromλ, and thenF is chosen fromDαθ , the Dirichlet process
with parameter measureαθ (Ferguson 1973, 1974), we say that the prior onF is a mixture of
Dirichlet processes (with parameter({αθ}θ∈Θ, λ)). Although it is sometimes useful to allow
Mθ to depend onθ, for the sake of clarity of exposition we will assume thatMθ does not vary
with θ, and we will denote the common value byM . In this case,M can be interpreted as
a precision parameter that indicates the degree of concentration of the prior onF around the
parametric family{Hθ; θ ∈ Θ}. In a somewhat oversimplified but nevertheless useful view
of this class of priors, we think of the family{Hθ; θ ∈ Θ} as a “line” (of dimensionk) in the
infinite-dimensional space of cdf’s, and we imagine “tubes” around this line. For large values
ofM , the mixture of Dirichlet processes puts most of its mass in narrow tubes, while for small
values ofM the prior is more diffuse.

If we take the parametric family{Hθ} to be theN (µ, τ 2) family andλ to be the normal /
inverse gamma conjugate prior, the model is expressed hierarchically as follows:

Conditional onψi, Di
ind∼ N (ψi, σ

2
i ), i = 1, . . . ,m (2.1a)

Conditional onF, ψi
iid∼ F, i = 1, . . . ,m (2.1b)

Conditional onµ, τ, F ∼ DMN (µ,τ2) (2.1c)

Conditional onτ, µ ∼ N (c, dτ 2) (2.1d)

γ = 1/τ 2 ∼ Gamma(a, b) (2.1e)

In (2.1d) and (2.1e),a, b, d > 0, and−∞ < c < ∞ are arbitrary but fixed. Theσi’s
are unknown and it is common to use estimatesσ̂i instead. If the studies do not involve
small samples, this substitution has little effect (DerSimonian and Laird 1986); otherwise
one will want to also put priors on theσi’s. This kind of model has been used successfully
to model random effects in many situations. An early version of the model and a Gibbs
sampling algorithm for estimating posterior distributions were developed in Escobar (1988,
1994). Letψ = (ψ1, . . . , ψm) andD = (D1, . . . , Dm). In essence, the Gibbs sampler
runs over the vector of latent variablesψ and the pair(µ, τ), and the result is a sample
(ψ(g), µ(g), τ (g)); g = 1, . . . , G, which are approximately distributed according to the con-
ditional distribution of(ψ, µ, τ) given the data. See the papers in Dey et al. (1998) and Neal
(2000) for recent developments concerning models of this kind.

In this paper, we will useL generically to denote distribution or law. We will adopt the
convention that subscripting a distribution indicates conditioning. Thus, ifU andV are two
random variables, bothL(U | V,D) andLD(U | V ) mean the same thing. However, we will
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useLD(U | V ) when we want to focus attention on the conditioning onV . This is useful in
describing steps in a Gibbs sampler, for example, whenD is fixed throughout.

As mentioned earlier, in the kind of meta-analysis we have in mind, the question of prin-
cipal interest is whether or not the mean ofF , the distribution of the study-specific effect, is
different from0. Note that in Model (2.1),µ is not equal toη = η(F ) =

∫
x dF (x), the mean

of F , and so inference onη is not given automatically as part of the Gibbs sampler output.
The method of Gelfand and Kottas (2002) (see also Muliere and Tardella 1998) can be used

to estimate the posterior distribution ofη. This method is based on Sethuraman’s (1994) con-
struction, which represents the Dirichlet process as an infinite sum of atoms, with an explicit
description of their locations and sizes. In brief, the method of Gelfand and Kottas (2002)
involves working with a truncated version of this infinite sum. How far out into the sum one
needs to go in order to get accurate results depends onM +m, the parameters of the model,
and the data. In particular, the truncation point needs to grow with the quantityM + m, and
the algorithm gives good results when this quantity is small or moderate but can be quite slow
when it is large. In principle, the truncation point can be chosen through informal calculations,
but it is difficult to do so when implementing a MCMC algorithm because then the parameters
of the Dirichlet process are perpetually changing. [We mention that we have used Sethura-
man’s construction to generate a Gibbs sampler in previous work (Doss 1994). The situation
encountered in that paper was quite different however, in that there, we needed to generate
random variables from anF with a Dirichlet distribution. The algorithm we used required us
to generate only a segment ofF in which the number of terms was finite but random, and the
resulting random variables turned out to have the distributionF exactly.]

3 A Semi-Parametric Model and Algorithm for Random Ef-
fects Meta-Analysis

As an alternative to the class of mixtures of Dirichlet processes in Model (2.1), we may use
a class of mixtures of conditional Dirichlet processes, in whichµ is the median ofF with
probability one. This can be done by using a construction given in Doss (1985), which is
reviewed below. Conditional Dirichlets have also been used to deal with identifiability issues
by Newton et al. (1996).

3.1 A Model Based on Mixtures of Conditional Dirichlet Processes

Let α be a finite measure on the real line, and letµ ∈ (−∞,∞) be fixed. Letαµ− andαµ+ be
the restrictions ofα to (−∞, µ) and(µ,∞), respectively, in the following sense. For any set
A,

αµ−(A) = α{A ∩ (−∞, µ)}+ 1
2
α{A ∩ {µ}} andαµ+(A) = α{A ∩ (µ,∞)}+ 1

2
α{A ∩ {µ}}.

ChooseF− ∼ Dαµ−
andF+ ∼ Dαµ+

independently, and formF by

F (t) = 1
2
F−(t) + 1

2
F+(t). (3.1)
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The distribution ofF will be denotedDµ
α. Note that with probability one, the median ofF

is µ. The priorDµ
α has the following interpretation: IfF ∼ Dα, thenDµ

α is the conditional
distribution ofF given that the median ofF isµ. Note that ifα has medianµ, thenE(F (t)) =
α(t)/α{(−∞,∞)}, as before, and furthermore, the quantityα{(−∞,∞)} continues to play
the role of a precision parameter.

We will use a conditional Dirichlet process instead of a Dirichlet process; thus, Model (2.1)
is replaced by the following:

Conditional onψi, Di
ind∼ N (ψi, σ

2
i ), i = 1, . . . ,m (3.2a)

Conditional onF, ψi
iid∼ F, i = 1, . . . ,m (3.2b)

Conditional onµ, τ, F ∼ Dµ
MN (µ,τ2) (3.2c)

Conditional onτ, µ ∼ N (c, dτ 2) (3.2d)

γ = 1/τ 2 ∼ Gamma(a, b) (3.2e)

If we wish to have a dispersed prior on(µ, τ) we may takea andb small,c = 0, andd large.
Before proceeding, we remark on the objectives when using a model of the form (3.2).

Obtaining good estimates of the entire mixture distributionF usually requires very large sam-
ple sizes (here the number of studies). It will often be the case that the number of studies is not
particularly large, and when using Model (3.2) the focus will then be on inference concerning
the univariate parameterµ. For the case where theψi’s are observed completely (equivalent
to the model where each study involves an infinite sample size), a model of the form (3.2)
reduces to the model studied in Doss (1985), which was introduced for the purpose of robust
estimation ofµ. For this case, the posterior distribution ofµ is given in Proposition 1 below.
Assuming that theψi’s are all distinct, this posterior has a density that is essentially a product
of two terms, one which shrinks it towards the mean of theψi’s, and the other which shrinks
it towards their median. The mean of this posterior has good small sample (i.e. smallm) fre-
quentist properties (Doss 1983, 1985). This is discussed in more detail in Section 3.2 below,
where we also discuss the ramifications for Model (3.2), where theψi’s are not necessarily
all distinct. The general effect is illustrated in Section 4.1, where we compare Models (2.1)
and (3.2).

To conclude, there are two reasons for using this model. First, as mentioned earlier, in (3.2)
the parameterµ has a well-defined role, and as will be seen in Section 3.2 below, is easily
estimated because it emerges as part of the Gibbs sampler output. Second, for Model (3.2) the
posterior distribution ofµ is not heavily influenced by a few outlying studies.

3.2 A Gibbs Sampler for Estimating the Posterior Distribution

There is no known way to obtain the posterior distribution in closed form for Model (3.2), and
one must use Markov chain Monte Carlo. Markov chain methods for estimating the posterior
distribution ofF givenDi, i = 1, . . . ,m in a model of the sort (2.1) are now well established,
and are based on Escobar’s (1994) use of the Pólya urn scheme of Blackwell and MacQueen
(1973). It is possible to improve Escobar’s (1994) original algorithm to substantially speed up
convergence; see the recent paper by Neal (2000), which reviews previous work and presents
new ideas. Here, we describe a basic Gibbs sampling algorithm for Model (3.2). It is possible
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to develop versions of some of the algorithms described in Neal (2000) that can be imple-
mented for Model (3.2), using as basis the formulas developed in this section, but we do not
do so here.

We are primarily interested in the posterior distribution ofµ, but we will also be interested
in other posterior distributions, such asLD(ψm+1) andLD(F ). Here,ψm+1 denotes the study-
specific effect for a future study, so thatLD(ψm+1) is a predictive distribution. All of these can
be estimated if we can generate a sample fromLD(ψ, µ, τ). Our Gibbs sampler on(ψ, µ, τ)
has cyclem+ 1 and proceeds by updatingψ1, . . . , ψm and then thepair (µ, τ).

One of the steps of our Gibbs sampling algorithm requires the following result, which
gives the posterior distribution of the mixing parameter for the situation in which theψi’s are
known. LetH be a distribution function. Define

Hθ(x) = H
(
(x− µ)/τ

)
for θ = (µ, τ).

Let ψ = (ψ1, . . . , ψm). We will useψ(−i) to denote(ψ1, . . . , ψi−1, ψi+1, . . . , ψm). (For the
sake of completeness, we give the result for the general case whereMθ depends onθ.)

Proposition 1 Assume that H is absolutely continuous, with continuous density h, and that
the median ofH is 0. If ψ1, . . . , ψm are iid∼ F , and if the prior on F is the mixture of conditional
Dirichlets

∫
Dµ
MθHθ

λ(dθ), then the posterior distribution of θ given ψ1, . . . , ψm is absolutely
continuous with respect to λ and is given by

λψ(dθ) = c(ψ)

(∏
disth
(ψi − µ

τ

))
K(ψ, θ)

[
(Mθ)

#(ψ)Γ(Mθ)

Γ(Mθ + n)

]
λ(dθ), (3.3)

where

K(ψ, θ) =
[
Γ
(
Mθ/2 +

∑m
i=1 I(ψi < µ)

)
Γ
(
Mθ/2 +

∑m
i=1 I(ψi > µ)

)]−1

, (3.4)

the ‘dist’ in the product indicates that the product is taken over distinct values only, #(ψ) is the
number of distinct values in the vector ψ, Γ is the gamma function, and c(ψ) is a normalizing
constant.

Proposition 1 is proved through a computation much like the one used to prove Theorem 1
of Doss (1985). We need to proceed with that calculation with the linear Borel setA replaced
by the product of Borel setsA1 × A2, whereA1 is a subset of the reals andA2 is a subset of
the strictly positive reals, and use the fact that these rectangles form a determining class.

Note that ifMθ does not depend onθ, in (3.3) the term in square brackets is a constant
that can be absorbed into the overall normalizing constant, andK(ψ, θ) depends onθ only
throughµ (by slight abuse of notation we will then writeK(ψ, µ)). In this case, (3.3) is
similar to the familiar formula that says that the posterior is proportional to the likelihood times
the prior, except that the likelihood is based on the distinct observations only, and we now
also have the multiplicative factorK(ψ, µ). If the prior onF was the mixture of Dirichlets∫
DMθHθ λ(dθ)—as opposed to a mixture of conditional Dirichlets—the posterior distribution

of θ would be the same as (3.3), but without the factorK(ψ, θ) [Lemma 1 of Antoniak (1974)].
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The factorK(ψ, µ) plays an interesting role. Viewed as a function ofµ, K(ψ, µ) has a
maximum whenµ is at the median of theψi’s, and asµ moves away from the sample median
in either direction, it is constant between the observations, and decreases by jumps at each
observation. It has the general effect of shrinking the posterior distribution ofµ towards the
sample median, and does so more strongly whenM is small.

Consider the termL(ψ, θ) =
∏

disth((ψi − µ)/τ) in (3.3). When implementing the Gibbs
sampler, the effect ofL(ψ, θ) diminishes asM decreases. This is because whenM is small,
the vectorψ is partitioned into a batch of clusters, with theψi’s in the same cluster being
equal. As a consequence, for smallM , inference onµ is stable in Model (3.2) [because of the
presence of the termK(ψ, θ)] but not in Model (2.1). It is an interesting fact that for smallM
the decreased relevance of the termL(ψ, θ) creates problems for the estimation ofµ, but not
for the estimation ofη =

∫
x dF (x). We see this as follows. The conditional distribution of

F givenψ1, . . . , ψm is equal to

Lψ(F ) =

∫
Lψ(F | θ)λψ(dθ) =

∫
DMHθ+

∑m
i=1 δψi

λψ(dθ),

and for smallM , this is essentially equal toD∑m
i=1 δψi

, i.e. the mixing parameter plays no role.

Before giving the detailed description of the algorithm, we give an outline of the main
steps involved.

Step 1: Update ψ. For i = 1, . . . ,m, we generate successively ψi given the current values
of ψj , j 6= i, µ, τ , and the data. The conditional distribution involved is a mixture of
a normal truncated to the interval (−∞, µ), another normal truncated to the interval
(µ,∞) and point masses at the ψj , j 6= i.

Step 2: Update (µ, τ). To generate (µ, τ) given ψ we go through two steps.

2a: We generate µ from its marginal distribution given ψ (τ being integrated out). This is
proportional to a t-distribution times an easily calculated factor.

2b: We generate τ from its conditional distribution given µ and ψ. The distribution of 1/τ2

is a gamma.

We now describe the algorithm in detail, and we first discussLD(ψi | ψ(−i), µ, τ), where
ψ(−i) = (ψ1, . . . , ψi−1, ψi+1, . . . , ψm). Rewriting this as

L{ψ(−i),µ,τ}(ψi |D) = L{ψ(−i),µ,τ}(ψi | Di)

makes it simple to see that we can calculate this using a standard formula for the posterior
distribution (i.e. the posterior is proportional to the likelihood times the prior). Using the
well-known fact that

if X1, . . . , Xm are
iid∼ F, F ∼ DMH , thenL(Xi |X(−i)) =

MH +
∑

j 6=i δXj
M +m− 1

,

it is not too difficult to see that the “prior” is

L{ψ(−i),µ,τ}(ψi) =
1

2

MN µ
−(µ, τ 2) +

∑
j 6=i; ψj<µ δψj

M/2 +m−
+

1

2

MN µ
+(µ, τ 2) +

∑
j 6=i; ψj>µ δψj

M/2 +m+

, (3.5)
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where
m− =

∑
j 6=i

I(ψj < µ) and m+ =
∑
j 6=i

I(ψj > µ),

and we are using the notationN µ
−(a, b) andN µ

+(a, b) to denote the restrictions (without renor-
malization) of theN (a, b) distribution to(−∞, µ) and(µ,∞), respectively. The “likelihood”
is

L{ψ(−i),µ,τ}(Di | ψi) = L(Di | ψi) = N (ψi, σ
2
i ), (3.6)

where the first equality in (3.6) follows becauseψ(−i), µ, andτ affectDi only through their
effect onψi, and the second equality in (3.6) is just the model statement (2.1a).

To combine (3.5) and (3.6), we note that the densities of the subdistribution functions
N µ
−(µ, τ 2) andN µ

+(µ, τ 2) are just the density of theN (µ, τ 2) distribution multiplied by the
indicators of the sets(−∞, µ) and (µ,∞), respectively. When we multiply these by the
density of theN (ψi, σ

2
i ) distribution, we can complete the square, resulting in constants times

the density of a new normal distribution. This gives

LD(ψi | ψ(−i), µ, τ) ∝ C−N µ
−(A,B2) + C+N µ

+(A,B2) +

∑
j 6=i
ψj<µ

δψj
1√

2πσi
exp
[
− (Di−ψj)2

2σ2
i

]
M/2 +m−

+

∑
j 6=i
ψj>µ

δψj
1√

2πσi
exp
[
− (Di−ψj)2

2σ2
i

]
M/2 +m+

, (3.7)

where

A =
µσ2

i +Diτ
2

σ2
i + τ 2

, B2 =
σ2
i τ

2

σ2
i + τ 2

,

C− =
M
/(

M
2

+m−
)√

2π(σ2
i + τ 2)

exp

[
− (Di − µ)2

2(σ2
i + τ 2)

]
and C+ =

M
/(

M
2

+m+

)√
2π(σ2

i + τ 2)
exp

[
− (Di − µ)2

2(σ2
i + τ 2)

]
.

The normalizing constant in (3.7) is

C−Φ
(µ− A

B

)
+ C+

(
1− Φ

(µ− A

B

))
+

∑
j 6=i
ψj<µ

1√
2πσi

exp
[
− (Di−ψj)2

2σ2
i

]
M/2 +m−

+∑
j 6=i
ψj>µ

1√
2πσi

exp
[
− (Di−ψj)2

2σ2
i

]
M/2 +m+

,

(Φ is the standard normal cumulative distribution function) and this enables us to sample from
LD(ψi | ψ(−i), µ, τ).

To generate(µ, τ) from LD(µ, τ | ψ), note thatLD(µ, τ | ψ) = L(µ, τ | ψ), and
this last is given by Proposition 1. Because of the factorK(ψ, µ), (3.3) is not available in
closed form. However, we are takingλ to be given by (3.2d) and (3.2e), which is conjugate
to theN (µ, τ 2) family, and this simplifies the form of (3.3). It is possible to generate(µ, τ)
from (3.3) if we first generateµ from its marginal posterior distribution (this is proportional
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to a t distribution multiplied by the factorK(ψ, µ)) and then generateτ from its conditional
posterior distribution givenµ (1/τ 2 is just a Gamma).

In more detail, letm∗ be the number of distinctψi’s, andψ̄∗ = (
∑distψi)/m

∗, where the
‘dist’ in the sum indicates that the sum is taken over distinct values only. ThenL(µ, τ | ψ)
has density proportional to the product

gψ(µ, τ)K(ψ, µ), (3.8)

wheregψ(µ, τ) has the form (3.2d)–(3.2e), with updated parametersa′, b′, c′, d′ given by

a′ = a+m∗/2, b′ = b+
1

2

∑ dist
(ψi − ψ̄∗)2 +

m∗(ψ̄∗ − c)2

2(1 +m∗d)

c′ =
c+m∗dψ̄∗

m∗d+ 1
, d′ =

1

m∗ + d−1

This follows from the conjugacy (Berger 1985, p. 288). Integrating outτ in (3.8) (and noting
thatK(ψ, µ) does not depend onτ ) we see that the (marginal) conditional distribution ofµ
givenψ has density proportional to

t
(
2a′, c′, b′d′/a′

)
(·)K(ψ, ·). (3.9)

Here,t(d, l, s2) denotes the density of thet distribution withd degrees of freedom, locationl,
and scale parameters. BecauseK(ψ, ·) is a step function, it is possible to do exact random
variable generation from this posterior density. [The real line is partitioned into them∗ + 1
disjoint intervals formed by them∗ distinctψi’s. Then, the measures of thesem∗ + 1 intervals
are calculated under (3.9) and renormalized to form a probability vector. One of thesem∗ +
1 intervals is chosen according to this probability vector, and finally a random variable is
generated from thet

(
2a′, c′, b′d′/a′

)
distribution restricted to the interval and renormalized to

be a probability measure.] The conditional distribution of1/τ 2 givenψ andµ is Gamma
(
a′+

1/2, b′ + (µ− c′)2/2d′
)
.

The algorithm described above gives us a sequence
(
ψ(g), µ(g), τ (g)

)
, g = 1, . . . , G, ap-

proximately distributed according toLD(ψ, µ, τ), and as mentioned earlier, various posterior
distributions can be estimated from this sequence. For example, to estimateLD(ψm+1), we
express this quantity as

∫
LD(ψm+1 | ψ, µ, τ) dLD(ψ, µ, τ), which we estimate by an average

of G distributions each of the form (3.5).

Shrinkage in the Posterior Distribution If F is chosen from a Dirichlet process prior and

ψ1, . . . , ψm are
iid∼ F , then there will be ties among theψi’s, i.e. they will form clusters, and

this tendency to form clusters is stronger whenM is smaller. This fact is well known, and
can easily be seen from Sethuraman’s (1994) construction, for example. We now discuss the
impact of this property on the posterior distribution ofψ1, . . . , ψm. In a standard parametric

hierarchical model, i.e. (3.2) except that (3.2b) and (3.2c) are replaced with the simplerψi
iid∼

N (µ, τ 2), i = 1, . . . ,m, the posterior distribution ofψi involves shrinkage towardsDi and
towards a grand mean. If we consider (3.7), we see that in the semi-parametric model, the
posterior distribution ofψi is also shrunk towards thoseψj ’s that are close toDi. WhenM is
small, the constantsC− andC+ are small, and this means that this effect is stronger.
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To conclude, the posterior distribution ofψi is affected by the results of all studies, but is
more heavily affected by studies whose results are similar to those of studyi. This effect is
illustrated in the example of Section 4.1.

3.3 Connection Between Posterior Distributions Under Models (2.1) and
(3.2)

It is natural to ask what is the connection between the posterior distribution ofµ under our
Model (3.2) and its posterior when the prior onF is (2.1). One way to get some insight into
this question is as follows. Letνc(ψ, µ, τ) denote the distribution of(ψ, µ, τ) under (3.2) for
some specification of(M, {Hθ}, λ), and letνu(ψ, µ, τ) denote the distribution under (2.1),
for the same specification of these hyperparameters. LetνcD(ψ, µ, τ) andνuD(ψ, µ, τ) denote
the corresponding posterior distributions. Proposition 2 below gives the relationship between
these two posterior distributions.

Proposition 2 Assume that H is absolutely continuous, with continuous density h, and that
the median of H is 0. Then the Radon-Nikodym derivative [dνcD/dν

u
D] is given by[

dνcD
dνuD

]
(ψ, µ, τ) = AK(ψ, µ),

where K is given in (3.4), and A does not depend on (ψ, µ, τ).

The proof is given in the Appendix. Here we remark on how the proposition can be
used. In general,A is difficult to compute, but this need not be a problem. Suppose that(
ψ(g), µ(g), τ (g)

)
, g = 1, . . . , G is Markov chain output generated under Model (2.1). Ex-

pectations with respect to Model (3.2) can be estimated by using a weighted average of the(
ψ(g), µ(g), τ (g)

)
’s, where the vector

(
ψ(g), µ(g), τ (g)

)
is given weight proportional to

K
(
ψ(g), µ(g)

)
(Hastings 1970), and to do this we do not need to knowA. Thus, vectors(

ψ(g), µ(g), τ (g)
)

such thatµ(g) is far from the median ofψ(g)
1 , . . . , ψ

(g)
m are given lower weight

than vectors for whichµ(g) is close to the median ofψ(g)
1 , . . . , ψ

(g)
m . Burr et al. (2003) applied

this reweighting scheme on the output of a simpler program that runs the Markov chain for
Model (2.1), in order to arrive at their estimates.

A drawback of the reweighting approach is that when the two distributions differ greatly,
a few of the Markov chain points will take up most of the weight, and the result will be that
estimates are unstable unless the chain is run for an extremely large number of cycles.

4 Illustrations

Here we illustrate the use of our models on two meta-analyses. In the first example, the issue
of main interest is the basic question of whether or not there is evidence of a treatment effect,
and the focus is on the latent parameterµ. In the second example, the principal interest is
on the latent parametersψi’s. In each case we ran our Gibbs sampler for100,000 cycles and
discarded the first5,000.

10



4.1 Decontamination of the Digestive Tract

Infections acquired in intensive care units are an important cause of mortality. One strategy for
dealing with this problem involves selective decontamination of the digestive tract. This is de-
signed to prevent infection by preventing carriage of potentially pathogenic micro-organisms
from the oropharynx, stomach, and gut. A meta-analysis of22 randomized trials to inves-
tigate the benefits of selective decontamination of the digestive tract was carried out by an
international collaborative group (Selective Decontamination of the Digestive Tract Trialists’
Collaborative Group 1993 [henceforth DTTCG 1993]). In each trial, patients in an intensive
care unit were randomized to either a treatment or a control group. The treatments varied,
with some including a topical (non-absorbable) antibiotic, while others included in addition
a systemic antibiotic. The antibiotics varied across trials. In each trial, the proportion of in-
dividuals who acquired an infection was recorded for the treatment and control groups and
an odds ratio was reported. The authors of the paper used a fixed effects model, in which
the22 trials were assumed to measure the same quantity. The22 odds ratios were combined
via the Mantel-Haenszel-Peto method. The results were that there is overwhelming evidence
that selective decontamination is effective in reducing the risk of infection: a95% confidence
interval for the common odds ratio was found to be(.31, .43). As expected, owing to the large
variation in treatment across trials, a test of heterogeneity was significant (p-value< .001);
however, a frequentist random effects analysis (DerSimonian and Laird 1986) gave similar
results.

This data set was reconsidered by Smith et al. (1995), who used a Bayesian hierarchical
model in which for each trial there is a true log odds ratioψi, viewed as a latent variable, and
for which the observed log odds ratio is an estimate. The true log odds ratios are assumed to
come from a normal distribution with meanµ and varianceτ 2, and a prior is put on(µ, τ).
Smith et al. (1995) show that the posterior probability thatµ is negative is extremely close to
1, confirming the results of DTTCG (1993), although with a different model.

An interesting later section of DTTCG (1993) considers mortality as the outcome vari-
able. Each of the22 trials reported also the proportion of individuals who died for the treat-
ment and control groups, and again an odds ratio was reported. Using a fixed effects model,
DTTCG (1993) find that the results are much less clear cut. The common odds ratio was
estimated to be.90, with a 95% confidence interval of(.79, 1.04). In 14 of the studies the
treatment included both topical and systemic antibiotics, and medical considerations suggest
that the effect of the treatment would be stronger in these studies. Indeed, for this subgroup
the common odds ratio was estimated to be.80, with a95% confidence interval of(.67, .97),
which does not include1. (Consideration of this subgroup had been planned prior to the anal-
ysis of the data.) The data for these14 studies appear in lines2–5 of Table 1, and the odds
ratios appear in line6 of the table. The studies are arranged in order of increasing odds ratio,
rather than in the original order given in DTTCG (1993), to facilitate inspection of the table.

Smith et al. (1995) noted that (for infection as the outcome variable), the data do not seem
to follow a normal distribution, and for this reason also used at-distribution. It is difficult to
test for normality for this kind of data (the studies had different sizes, and there are only14
studies). Nevertheless, the normal probability plot given in Figure 1 suggests some deviation
from normality for our data as well. In meta-analysis studies it is often the case that there is
some kind of grouping in the data—studies that have similar designs may yield similar results.
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Some evidence of this appears in Figure 1.
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Figure 1: Normal probability plot for the mortality data for studies including both topical and systemic
antibiotics. The areas of the circles are proportional to the inverse of the standard error.

We analyze these data using our semi-parametric Bayesian model. We fit model (3.2)
with a = b = .1, c = 0, andd = 1000, and several values ofM including .1 and1000,
in order to assess the effect of this hyperparameter on the conclusions. Large values ofM
essentially corresponds to a parametric Bayesian model based on a normal distribution, and
this asymptopia is for practical purposes reached forM as little as20. The valueM = .1
gives an extreme case, and would not ordinarily be used (see Sethuraman and Tiwari 1982); it
is included here only to give some insight into the behavior of the model.

Figure 2 below gives the posterior distribution ofµ for M = 1000 and1. ForM = 1000,
the posterior probability thatµ is positive is.04, but forM = 1, the posterior probability is
the non-significant figure of.16, which suggests that while the treatment reduces the rate of
infection, there is not enough evidence to conclude that there is a corresponding reduction in
mortality, even if the treatment involves both topical and systemic antibiotics.

The middle group of lines in Table 1 give the means of the posterior distributions for five
values ofM . The average of the posterior means (over the14 studies) is very close to.84 for
each of the five values ofM . From the table we see that forM = 1000, the posterior means of
the odds ratios are all shrunk from the value Obs OR towards.84. But for small values ofM ,
the posterior means are also shrunk towards the average for the observations in their vicinity.

To get some understanding of the difference in behavior between Models (3.2) and (2.1)
we ran a Gibbs sampler appropriate for Model (2.1), from which we created the last three
lines of Table 1. From the table we make the following observations. First, the two models
give virtually identical results for largeM , as one would expect. Second, the shrinkage in
Model (2.1) seems to have a different character, with attraction towards an overall mean being
much stronger for small values ofM . To get some insight on how the two models handle
outliers, we did the following experiment. We took the study with the largest observed odds
ratio and changed that from1.2 to2.0 (keeping that observation’s standard error and everything
else the same), and reran the algorithms. For largeM , for either modelE(ψ14 | D) moved
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Figure 2: Posterior distribution ofµ for M = 1000 and1.

from 1.03 to 1.50. ForM = 1, for Model (3.2)E(ψ14 |D) moved from1.04 to 1.44, whereas
for Model (2.1)E(ψ14 |D) moved from.93 to 1.52, a more significant change.

4.2 Clopidogrel vs. Aspirin Trial

When someone suffers an atherosclerotic vascular event (such as a stroke or a heart attack),
it is standard to administer an antiplatelet drug, to reduce the chance of another event. The
oldest such drug is Aspirin, but there are many other drugs on the market. One of these
is Clopidogrel, and an important study (CAPRIE Steering Committee 1996) compared this
drug with Aspirin in a large-scale trial. In this study,19,185 individuals who had suffered a
recent atherosclerotic vascular event were randomized to receive either Clopidogrel or Aspirin.
Patients were recruited over a three-year period, and mean follow-up was1.9 years. There
were939 events over17,636 person-years for the Clopidogrel group, compared with1021
events over 17,519 person-years for the Aspirin group, giving a risk ratio for Clopidogrel
vs. Aspirin of.913 [with 95% confidence interval(.835, 0.997)], and Clopidogrel was judged
superior to Aspirin, with a two-sidedp-value of .043. As a consequence of this landmark
study, Clopidogrel was favored over the much cheaper Aspirin for patients who have had an
atherosclerotic vascular event.

A short section of the paper (p. 1334) discusses briefly the outcomes for three subgroups
of patients, those participating in the study because they had had a stroke, a heart attack [my-
ocardial infarction (MI)], or peripheral arterial disease (PAD). The results for the three groups
differed: the risk ratios for Clopidogrel vs. Aspirin were0.927, 1.037, and0.762 for the stroke,
MI, and PAD groups, respectively. A test of homogeneity of the three risk ratios gives ap-
value of .042, providing mild evidence against the hypothesis that the three risk ratios are
equal.

We will analyze the data using the methods developed in this paper. On the surface, this
data set does not fit the description in Section 1 of this paper. The study was indeed designed
as a multicenter trial involving384 centers. However, the protocol was so well defined that
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Study no. 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Treat inf: 14 22 27 11 4 51 33 24 14 14 15 34 45 47
Treat tot: 45 55 74 75 28 131 91 161 49 48 51 162 220 220
Cont inf: 23 33 40 16 12 65 40 32 15 14 14 31 40 40
Cont tot: 46 57 77 75 60 140 92 170 47 49 50 160 220 220
Obs OR 0.46 0.49 0.54 0.64 0.71 0.74 0.74 0.76 0.86 1.03 1.07 1.10 1.16 1.22
M = .1 0.67 0.66 0.66 0.76 0.82 0.78 0.80 0.81 0.87 0.93 0.95 1.02 1.05 1.06
M = 1 0.70 0.69 0.69 0.78 0.83 0.79 0.80 0.81 0.87 0.92 0.93 0.99 1.02 1.04
M = 5 0.72 0.71 0.71 0.78 0.83 0.79 0.80 0.81 0.85 0.90 0.91 0.97 1.00 1.03
M = 20 0.72 0.71 0.71 0.78 0.83 0.79 0.80 0.81 0.85 0.90 0.91 0.96 1.00 1.03
M = 1000 0.72 0.71 0.71 0.78 0.83 0.79 0.80 0.81 0.85 0.90 0.91 0.96 1.01 1.04
Model (2.1)
M = 1 0.79 0.78 0.78 0.82 0.84 0.82 0.83 0.83 0.85 0.86 0.87 0.89 0.91 0.93
M = 5 0.74 0.73 0.73 0.80 0.83 0.80 0.81 0.82 0.85 0.89 0.89 0.94 0.98 1.00
M = 20 0.72 0.72 0.72 0.79 0.83 0.79 0.80 0.81 0.85 0.89 0.90 0.96 1.00 1.03

Table 1: Odds ratios for14 studies. Lines 2 and 3 give the number infected and the total number in the
treatment group, respectively, and lines 4 and 5 give the same information for the control group. The
line “Obs OR” gives the odds ratios that are observed in the14 studies. The next five lines give the
means of the posteriors under the semi-parametric Model (3.2) for five values ofM , and the bottom
three lines give posterior means for Model (2.1).

it is reasonable to ignore the center effect. We focus instead on the patient subgroups. Of
course, one may object to using a random effects model when there are only three groups
involved. However, there is nothing in our Bayesian formulation that requires us to have a
large number of groups involved—we simply should not expect to be able to obtain accurate
estimates of the overall parameterµ and especially of the mixing distributionF . We carry
out this analysis for two reasons. First, an analysis by subgroup is of medical interest, in
that for the MI subgroup, Aspirin seems to outperform Clopidogrel, or at the very least, the
evidence in favor of Clopidogrel is weaker. Second, there are studies currently under way that
are comparing the two drugs for patients with several sets of gene profiles. Thus the kind of
analysis we do here will apply directly to those studies, and the shrinkage discussed earlier
may give useful information. Before proceeding we remark that in this situation there is no
particular reason for preferring Model (3.2) to (2.1) (the emphasis is on theψi’s) and in any
case the two models turn out to give virtually identical conclusions.

Let ψstroke, ψMI , andψPAD be the logs of the true risk ratios for the three groups. Their
corresponding estimates are(Dstroke, DMI , DPAD) = (−0.076, 0.036,−0.272). We work on
the log scale because the normal approximation in (3.2a) is more accurate on this scale. The
estimated standard errors of theD’s are0.067, 0.083, and0.091, respectively. (These are
obtained from the number of events and the number of patient-years given on p. 1334 of the
paper, using standard formulas.) We fit model (3.2) witha, b, c andd as in Section 4.1. The
posterior distributions of theψ’s, on the original scale, are shown in Figure 3 forM = 1 and
1000, the latter essentially corresponding to a parametric Bayesian model. As expected, there
is shrinkage towards an overall value of.91. The shrinkage is stronger for smaller values of
M .

Our conclusions are as follows. The superiority of Clopidogrel to Aspirin for PAD is
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Figure 3: Posterior distributions of risk ratios, for three subgroups for Model (3.2) usingM = 1 (solid
lines) andM = 1000 (dashed lines). In each plot, R-est is the estimate reported in the Caprie paper; B-
est is the mean of the posterior distribution; R-int is the95% confidence interval reported in the paper;
B-int is the central95% probability interval for the posterior distribution; P(RR< 1) is the posterior
probability that the risk ratio is less than one. All posteriors are calculated for the caseM = 1, although
the corresponding quantities forM = 1000 are virtually identical.

unquestionable, no matter what analysis is done. For stroke, the situation is less clear: the
posterior probability that Clopidogrel is better is about.85 (for a wide range of values ofM .)
For MI, in the Bayesian model, the posterior probability that Clopidogrel is superior to Aspirin
is .38 forM = 1000. Even after the stronger shrinkage that occurs forM = 1, this probability
is only .65, so there is insufficient evidence for preferring Clopidogrel. The Caprie report
states that “the administration of Clopidogrel to patients with atherosclerotic vascular disease
is more effective than Aspirin . . . ” Our analysis suggests that this recommendation does not
have an adequate basis for the MI subgroup.

Implementation of the Gibbs sampling algorithm of Section 3.2 is done through easy to
useS-PLUS/R functions, available from the authors upon request. All the simulations can be
done inS-PLUS/R , although considerable gain in speed can be obtained by calling dynami-
cally loaded C subroutines.

Appendix: Proof of Proposition 2

A very brief outline of the proof is as follows. To calculate the Radon-Nikodym derivative
[dνcD/dν

u
D] at the point(ψ(0), µ(0), τ (0)), we will find the ratio of the probabilities, underνcD

andνuD, of the(m + 2)-dimensional cubes centered at(ψ(0), µ(0), τ (0)) and of widthε, let ε
tend to0, and give a justification for why this gives the Radon-Nikodym derivative.

We now proceed with the calculation, which is not entirely trivial. Letθ0 = (µ0, τ0) ∈ Θ

andψ(0) = (ψ
(0)
1 , . . . , ψ

(0)
m ) ∈ Rm be fixed. Letψ(0)

(1) < · · · < ψ
(0)
(r) be the distinct values of

ψ
(0)
1 , . . . , ψ

(0)
m , and letm1, . . . ,mr be their multiplicities (we will writeψ(j) instead ofψ(0)

(j) and
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µ instead ofµ0 to lighten the notation, whenever this will not cause confusion). Let

m− =
m∑
i=1

I(ψi < µ), m+ =
m∑
i=1

I(ψi > µ),

and

r− =
r∑
j=1

I(ψ(j) < µ), r+ =
r∑
j=1

I(ψ(j) > µ).

For smallε > 0, letCε

ψ
(0)
i

= (ψ
(0)
i − ε/2, ψ

(0)
i + ε/2), and defineCε

ψ(0) to be the cubeCε

ψ
(0)
1

×
· · ·×Cε

ψ
(0)
m

. Similarly defineBε
θ0

in Θ space. To calculate the likelihood ratio we first consider

the probability of the set
{
θ ∈ Bε

θ0
, ψ ∈ Cε

ψ(0)

}
under the two measuresνc andνu (and notνcD

andνuD). We will find it convenient to associate probability measures with their cumulative
distribution functions, and to use the same symbol to refer to both. Denoting the set of all
probability measures on the real line byP, we have

νc
{
θ ∈ Bε

θ0
, ψ ∈ Cε

ψ(0)

}
νu
{
θ ∈ Bε

θ0
, ψ ∈ Cε

ψ(0)

} =
νc
{
θ ∈ Bε

θ0
, F ∈ P , ψ ∈ Cε

ψ(0)

}
νu
{
θ ∈ Bε

θ0
, F ∈ P , ψ ∈ Cε

ψ(0)

}

=

∫
Bεθ0

∫
P

∏m
i=1 F

{
Cε

ψ
(0)
i

}
Dµ
αθ

(dF )λ(dθ)∫
Bεθ0

∫
P

∏m
i=1 F

{
Cε

ψ
(0)
i

}
Dαθ(dF )λ(dθ)

. (A.1)

Let

g−,ε
ψ(0)(θ) =

∫
P

∏
1≤i≤m
ψi<µ

F
{
Cε

ψ
(0)
i

}
Dµ
αθ

(dF ), g+,ε

ψ(0)(θ) =

∫
P

∏
1≤i≤m
ψi>µ

F
{
Cε

ψ
(0)
i

}
Dµ
αθ

(dF ), (A.2)

and

gε
ψ(0)(θ) =

∫
P

∏
1≤i≤m

F
{
Cε

ψ
(0)
i

}
Dαθ(dF ). (A.3)

Takeε small enough so that the sets(ψ
(0)
(j) − ε/2, ψ

(0)
(j) + ε/2), j = 1, . . . , r are disjoint.

Using the definition ofF given in (3.1), including the independence ofF− andF+, we rewrite
the inner integral in the numerator of (A.1) and obtain

νc
{
θ ∈ Bε

θ0
, ψ ∈ Cε

ψ(0)

}
νu
{
θ ∈ Bε

θ0
, ψ ∈ Cε

ψ(0)

} =

∫
Bεθ0

g−,ε
ψ(0)(θ) g

+,ε

ψ(0)(θ)λ(dθ)∫
Bεθ0

gε
ψ(0)(θ)λ(dθ)

=

∫
Bεθ0

(
g−,ε
ψ(0)(θ)

εr−
∏

1≤i≤m
ψi<µ

(mi − 1)!

)(
g+,ε

ψ(0)(θ)

εr+
∏

1≤i≤m
ψi>µ

(mi − 1)!

)
λ(dθ)

∫
Bεθ0

(
gε
ψ(0)(θ)

εr
∏

1≤i≤m(mi − 1)!

)
λ(dθ)

. (A.4)
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We may rewriteg−,ε
ψ(0)(θ) andg+,ε

ψ(0)(θ) in (A.2) as

g−,ε
ψ(0)(θ) =

∫
P

∏
1≤j≤r−
ψ(j)<µ

[
F
{
Cε

ψ
(0)
(j)

}]mj
Dµ
αθ

(dF ), (A.5a)

and

g+,ε

ψ(0)(θ) =

∫
P

∏
r−+1≤j≤r
ψ(j)>µ

[
F
{
Cε

ψ
(0)
(j)

}]mj
Dµ
αθ

(dF ), (A.5b)

respectively, and rewritegε
ψ(0)(θ) in (A.3) as

gε
ψ(0)(θ) =

∫
P

∏
1≤j≤r

[
F
{
Cε

ψ
(0)
(j)

}]mj
Dαθ(dF ). (A.6)

(Note that the conditionsψ(j) < µ andψ(j) > µ in the products in (A.5a) and (A.5b) are
redundant, since theψ(j)’s are ordered.) LetAj(ε) = αθ

{
(ψ(j) − ε/2, ψ(j) + ε/2)

}
, j =

1, . . . , r−, and also defineAr−+1(ε) = (M/2) −
∑r−

j=1Aj(ε). Calculation of (A.5a) is rou-
tine since it involves only the finite-dimensional Dirichlet distribution. The integral in (A.5a)
is E(Um1

1 · · ·Umr−
r− ) where(U1, . . . , Ur− , Ur−+1) ∼ Dirichlet

(
A1(ε), . . . , Ar−+1(ε)

)
, and we

can calculate this expectation explicitly. We obtain

g−,ε
ψ(0)(θ) =

(1

2

)m− Γ
(
M
2

)(∏r−
j=1 Γ

(
Aj(ε)

))
Γ
(
Ar−+1(ε)

)
(∏r−

j=1 Γ
(
Aj(ε) +mj

))
Γ
(
Ar−+1(ε)

)
Γ
(
M
2

+m−
) .

Let

f−
ψ(0)(θ) =

(1

2

)m−( r−∏
j=1

hθ(ψ(j))

)
M r− Γ

(
M
2

)
Γ
(
M
2

+m−
) ,

f+

ψ(0)(θ) =
(1

2

)m−( r∏
j=r−+1

hθ(ψ(j))

)
M r+ Γ

(
M
2

)
Γ
(
M
2

+m+

) ,
and

fψ(0)(θ) =

( r∏
j=1

hθ(ψ(j))

)
M r Γ(M)

Γ(M +m)
.

Here,hθ is the density ofHθ. Using the recursionΓ(x+ 1) = xΓ(x) and the definition of the
derivative, we see that

g−,ε
ψ(0)(θ)

εr−
∏r−

j=1(mj − 1)!
→ f−

ψ(0)(θ) for eachθ ∈ Θ.

Similarly,

g+,ε

ψ(0)(θ)

εr+
∏r

j=r−+1(mj − 1)!
→ f+

ψ(0)(θ) and
gε
ψ(0)(θ)

εr
∏r

j=1(mj − 1)!
→ fψ(0)(θ) for eachθ ∈ Θ.
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Furthermore, sinceh is continuous, the convergence is uniform in small neighborhoods ofθ0.
Therefore, it is clear that (A.4) converges to(1

2

)m Γ2
(
M
2

)
Γ(M +m)

Γ(M)Γ
(
M
2

+m−
)
Γ
(
M
2

+m+

) =
(1

2

)m[Γ2
(
M
2

)
Γ(M +m)

Γ(M)

]
K(ψ(0), µ(0)), (A.7)

and we note that the expression in brackets does not depend on(ψ(0), µ(0), τ (0)).
We now return toνcD andνuD. The posterior is proportional to the likelihood times the

prior, and since the likelihood is the same under the two models (i.e. (2.1a) and (3.2a) are
identical), we obtain [

dνcD
dνuD

]
(ψ(0), µ(0), τ (0)) = AK(ψ(0), µ(0)),

whereA does not depend on(ψ(0), µ(0), τ (0)), as stated in the proposition.
The calculation of the Radon-Nikodym derivatives[dνc/dνu] and[dνcD/dν

u
D] in this way

is supported by a martingale construction (see e.g. Durrett 1991, pp. 209–210) and the main
theorem in Pfanzagl (1979).
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