Objective Bayesian Variable Selection

George Casella
University of Florida

Elías Moreno
University of Granada
casella@stat.uff.edu
December 2, 2002

Overview

- Introduction
- Model Selection
- Evaluating the Models
- Objective Bayesian Solution
- Evaluation of Posterior Probabilities
- Simulated and Real Data
- Implementation
- MCMC Stochastic Search
- Evaluation of Search Algorithm
- Simulated and Real Data
- Conclusions

Introduction

- Variable Selection in Normal Regression Models
- A dependent random variable Y and a set $\left\{X_{1}, \ldots, X_{k}\right\}$ of k potential explanatory regressors
- Every model with regressors

$$
\left\{X_{i_{1}}, \ldots, X_{i_{q}}\right\}
$$

is a priori a plausible model for Y.

- 2^{k-1} potential models (intercept always included).

Introduction

- Interest here is in model selection.
- If interest is in prediction:
- The prediction can be through model averaging
- The selection problem seems to be avoided.
- But it may be impossible to compute every model.

Introduction

- We will see the Ozone data example, in which there are 2^{65} possible models.
$2^{65}=36,893,488,147,419,103,232$
- Before model averaging we must select models to average.
- So prediction will be preceded by model selection.

Two Aspects of Model Selection

- The selection mechanism to be criterionbased and fully automatic
- Criterion-based selection
\diamond clear understanding of the properties of the selected models
- Fully automatic algorithms
\diamond no tuning parameters, hyperparameters, etc. to estimate
\diamond easy to implement
\diamond no sensitivity analysis needed

Model Selection is

Multiple Hypothesis Testing

- must exactly specify the hypotheses for each model evaluation.
- the evaluation of model M should be

$$
H_{0}: M=\text { reduced model }
$$

vS.
$H_{A}: M=$ model with all predictor variables.

- The full model comes from the subjectmatter, and is the correct reference.

Model Selection

- We assume that all predictors have some importance, and examine if a smaller subset is adequate.
- For a Bayesian evaluation, the prior distribution should be
- centered at each H_{0}.
- specific to each null model M under consideration.

Objective Probabilities

- Since we are not confident about any given set of explanatory variables, little prior information on their regression coefficients could be expected.
- If we were confident about a particular model, there would be no model selection problem!

Objective Probabilities

- With little prior information, an objective model choice approach is justified.
- Since typical default priors for normal regression are improper, they cannot be used.

Subjective Bayesian Variable Selection

- History:

Atkinson(1978)
Smith and Spiegelhalter (1980)
Pericchi (1984)
Poirier (1985)
Box and Meyer (1986)
George and McCulloch(1993,1995, 1997)
Clyde, DeSimone and Parmigiani(1996)
Geweke (1996)
Smith and Kohn (1996)
and others.

Subjective Bayesian Variable Selection

- The prior distributions are typically - conjugate priors - some closely related distribution
- Also,
- typical to center the priors at zero - the null hypothesis is the model with no regressors

Objective Model Selection

- Mitchell and Beauchamp (1988)
- regression coefficients a priori iid
o prior distribution that concentrates some probability mass on zero and distributes the rest uniformly on a compact set.
o variable selection problem is essentially an estimation problem

Objective Model Selection

- Spiegelhalter and Smith (1982)
o used conventional improper priors for the regression coefficients
- analysis based on a formal rather than an actual Bayes factor o calibrated with subjective information

Intrinsic Bayes Factors

- A fully automatic analysis for model comparison in regression was given in Berger and Pericchi (1996).
- They use
o encompassing model approach
- empirical measure for model comparison, the intrinsic Bayes factor

Evaluating the Models

- Full Model:

$$
\mathbf{y}=\mathbf{X} \alpha+\varepsilon, \quad \varepsilon \sim N_{n}\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{n}\right)
$$

- Submodels:

$$
\mathbf{y}=\mathbf{X} \beta_{\boldsymbol{\gamma}}, \quad \varepsilon \sim N_{n}\left(\mathbf{0}, \sigma_{\gamma}^{2} \mathbf{I}_{n}\right)
$$

where

$$
\boldsymbol{\beta}_{\boldsymbol{\gamma}}=\boldsymbol{\alpha} \cdot \gamma
$$

and

$$
\gamma_{i}= \begin{cases}0, & \text { if } \alpha_{i}=0 \\ 1, & \text { otherwise }\end{cases}
$$

$$
\text { for } i=1, \ldots, k \text {. }
$$

Prior Distributions

- Complete model specification:

$$
M_{\boldsymbol{\gamma}}:\left\{N_{n}\left(\mathbf{y} \mid \mathbf{X} \boldsymbol{\beta}_{\boldsymbol{\gamma}}, \sigma_{\boldsymbol{\gamma}}^{2} \mathbf{I}_{n}\right), \pi\left(\boldsymbol{\beta}_{\boldsymbol{\gamma}}, \sigma \boldsymbol{\gamma}\right), \boldsymbol{\gamma} \in \Gamma\right\} .
$$

- Default prior on the set of models

$$
P\left(M_{\boldsymbol{\gamma}}\right)=2^{-(k-1)}, \quad\{M \boldsymbol{\gamma}, \boldsymbol{\gamma} \in \Gamma\} .
$$

Hypothesis Tests

- Test

$$
H_{0}: M=M_{\gamma} \text { vs. } H_{A}: M=M_{1}
$$

using

$$
\begin{aligned}
& P\left(M_{\boldsymbol{\gamma}} \mid \mathbf{y}, \mathbf{X}\right)= \\
& \frac{m_{\boldsymbol{\gamma}}(\mathbf{y}, \mathbf{X})}{m_{\mathbf{1}}(\mathbf{y}, \mathbf{X})+\Sigma_{\boldsymbol{\gamma} \in \Gamma, \boldsymbol{\gamma} \neq \mathbf{1}} m_{\boldsymbol{\gamma}}(\mathbf{y}, \mathbf{X})},
\end{aligned}
$$

to measure the support for H_{0}.

Hypothesis Tests

- Note that
$P\left(M_{\boldsymbol{\gamma}} \mid \mathbf{y}, \mathbf{X}\right)=\frac{B_{\boldsymbol{\gamma} 1}(\mathbf{y}, \mathbf{X})}{1+\Sigma_{\boldsymbol{\gamma} \in \Gamma, \boldsymbol{\gamma} \neq \mathbf{1}} B_{\boldsymbol{\gamma} 1}(\mathbf{y}, \mathbf{X})}$,
so every posterior probability has the same denominator.
This will be important in later calculations.

Default Priors

- We want a default or "automatic" prior - To remove subjectivity from the choice of $\pi\left(\beta \gamma, \sigma_{\gamma}\right)$
- to make our procedure automatic

Default Priors

- The standard default prior is improper - The integral of the marginal is infinite - The Bayes factor can only be computed up to an arbitrary positive constant that cannot be determined

Intrinsic Priors

- Berger and Pericchi (1996)
- Fix the impropriety problem
- Provide sensible objective proper priors
- Moreno et al. (1998) develop intrinsic priors further and show
- there is an entire class
o which one to use

An Intrinsic Prior for Model Selection

Lemma 1 The intrinsic prior for $\boldsymbol{\alpha}$ conditional on a fixed point $\left(\boldsymbol{\beta}_{\boldsymbol{\gamma}}, \sigma_{\boldsymbol{\gamma}}\right)$ is

$$
\pi^{I}\left(\boldsymbol{\alpha}, \sigma \mid \boldsymbol{\beta}_{\boldsymbol{\gamma}}, \sigma \boldsymbol{\gamma}\right)=
$$

$$
N_{k}\left(\boldsymbol{\alpha} \mid \boldsymbol{\beta}_{\boldsymbol{\gamma}},\left(\sigma_{\boldsymbol{\gamma}}^{2}+\sigma^{2}\right) \mathbf{W}^{-1}\right) \frac{1}{\sigma_{\boldsymbol{\gamma}}}\left(1+\frac{\sigma^{2}}{\sigma_{\boldsymbol{\gamma}}^{2}}\right)^{-3 / 2}
$$ where

- $\mathbf{W}=\mathbf{Z}^{t} \mathbf{Z}$
$\circ \mathbf{Z}_{(k+1) \times k}$ is a theoretical design matrix

The prior of α

$$
\begin{aligned}
& \pi^{I}\left(\boldsymbol{\alpha} \mid \boldsymbol{\beta}{ }_{\gamma}, \sigma_{\gamma}\right)= \\
& \int N_{k}\left(\boldsymbol{\alpha} \mid \boldsymbol{\beta} \boldsymbol{\gamma}_{\boldsymbol{\gamma}},\left(\sigma_{\boldsymbol{\gamma}}^{2}+\sigma^{2}\right) \mathbf{W}^{-1}\right) \frac{1}{\sigma_{\boldsymbol{\gamma}}}\left(1+\frac{\sigma^{2}}{\sigma_{\gamma}^{2}}\right)^{-3 / 2} d \sigma
\end{aligned}
$$

- An elliptical multivariate distribution with mean $\boldsymbol{\beta}_{\boldsymbol{\gamma}}$.

The prior of α

- The intrinsic prior for $\boldsymbol{\alpha}$ is centered at the null.
- This property is not shared by many other variable selection priors.
- Moments ≥ 2 do not exist. This implies that the intrinsic prior has very heavy tails, as expected for a default prior.

Performance of the Intrinsic Posterior Probabilities

- Are the posterior probabilities a reasonable tool for finding the true model?
- Example: Full Model

$$
\begin{aligned}
& y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{1}^{2}+\beta_{4} x_{2}^{2}+\varepsilon \\
& \text { where } \varepsilon \sim N\left(0, \sigma^{2}\right)
\end{aligned}
$$

Performance of the Intrinsic Posterior Probabilities

- The x_{i} values are generated uniformly in the interval $(0,10)$
- We simulated 1000 data sets, with $n=10$ and true model $\{1,1,1,0,0\}$:

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\varepsilon .
$$

Example: Hald Regression Data

- An ancient and often-analyzed data set
- Measure the effect of heat on the composition of cement
- 13 observations on the dependent variable (heat)
- 4 predictor variables (which relate to the composition of the cement)
- $2^{4}=16$ possible models

Example: Hald Regression Data

- Posterior probabilities for the models of the Hald data.
- All other models had posterior probability less than 0.00001.

Variables	Posterior Probability
x_{1}, x_{2}	0.5224
x_{1}, x_{4}	0.1295
x_{1}, x_{2}, x_{3}	0.1225
x_{1}, x_{2}, x_{4}	0.1098
x_{1}, x_{3}, x_{4}	0.0925
x_{2}, x_{3}, x_{4}	0.0120
$x_{1}, x_{2}, x_{3}, x_{4}$	0.0095
x_{3}, x_{4}	0.0013

Example: Hald Regression Data

- Comparison to Other Findings

Top Models		
Intrinsic Prior	Berger/Pericchi	Draper/Smith
x_{1}, x_{2}	x_{1}, x_{2}	x_{1}, x_{2}
x_{1}, x_{4}	x_{1}, x_{4}	x_{1}, x_{4}
x_{1}, x_{2}, x_{3}	---	---
x_{1}, x_{2}, x_{4}	---	x_{1}, x_{2}, x_{4}
x_{1}, x_{3}, x_{4}	---	---
x_{2}, x_{3}, x_{4}	----	---
$x_{1}, x_{2}, x_{3}, x_{4}$	---	---
x_{3}, x_{4}	x_{3}, x_{4}	---

Berger/Pericchi: "... $\left\{x_{1}, x_{2}\right\}$ is moderately preferred to $\left\{x_{1}, x_{4}\right\}$ and quite strongly preferred to $\left\{x_{3}, x_{4}\right\}$ ".

Example: Hald Regression Data

- Comparison to Other Findings
- Stochastic search of George and McCulloch (1993)
- visited $\left\{x_{1}, x_{2}\right\}$ less that 7% of the time.
o selected as the best model the interceptonly model
o possibly a consequence of using the no-regressors-model (not even an intercept) as the null model

Calculating the Posterior Probabilities

- Computation is relatively easy
- The matrix \mathbf{W}^{-1} is

$$
\mathbf{W}^{-1}=\frac{1}{L} \sum_{\ell=1}^{L}\left(\mathbf{Z}^{t}(\ell) \mathbf{Z}(\ell)\right)^{-1}
$$

where $\{\mathbf{Z}(\ell), \ell=1, \ldots, L\}$ is the set of all submatrices of \mathbf{X} of order $(k+1) \times k$ of rank k, a training sample of minimal size.

Calculating the Posterior Probabilities

- Using a polar transformation, the Bayes factor can be written

$$
\begin{aligned}
& B_{\boldsymbol{\gamma} 1}(\mathbf{y}, \mathbf{X})= \\
& \left(\left|\mathbf{X}_{1}^{t} \boldsymbol{\gamma}^{\mathbf{X}_{1} \boldsymbol{\gamma}}\right|^{1 / 2}\left(\mathbf{y}^{t}\left(\mathbf{I}_{n}-\mathbf{H}_{\boldsymbol{\gamma}}\right) \mathbf{y}\right)^{\left(n-k_{\gamma}+1\right) / 2} I \boldsymbol{\gamma}\right)^{-1}
\end{aligned}
$$

Calculating the Posterior Probabilities

$$
\begin{aligned}
& \mathbf{H}_{\boldsymbol{\gamma}}=\mathbf{X}_{1 \boldsymbol{\gamma}}\left(\mathbf{X}_{1}^{t} \boldsymbol{\gamma}_{1 \boldsymbol{\gamma}}\right)^{-1} \mathbf{X}_{1}^{t} \boldsymbol{\gamma} \\
& I_{\boldsymbol{\gamma}}=\int_{0}^{\pi / 2} \frac{|\mathbf{B}(\varphi)|^{\frac{1}{2}} d \varphi}{\left|\mathbf{A}_{\boldsymbol{\gamma}}(\varphi)\right|^{\frac{1}{2}} E_{\boldsymbol{\gamma}}(\varphi)^{\frac{n-k \gamma+1}{2}}} \\
& \mathbf{B}(\varphi)=\left[\left(\sin ^{2} \varphi\right) \mathbf{I}_{n}+\mathbf{X} \mathbf{W}^{-1} \mathbf{X}^{t}\right]^{-1}, \\
& \mathbf{A}_{\boldsymbol{\gamma}}(\varphi)=\mathbf{X}_{1}^{t} \boldsymbol{\gamma} \mathbf{B}(\varphi) \mathbf{X}_{1} \boldsymbol{\gamma} \\
& E_{\boldsymbol{\gamma}}(\varphi)=\mathbf{y}^{t}\left(\mathbf{B}(\varphi)-\mathbf{B}(\varphi) \mathbf{X}_{1} \boldsymbol{\gamma}_{\mathbf{A}} \mathbf{A}_{\boldsymbol{\gamma}}^{-1}(\varphi) \mathbf{X}_{1 \boldsymbol{\gamma}}^{t} \mathbf{B}(\varphi)\right) \mathbf{y} \\
& \text { The important point is that there is only }
\end{aligned} \text { one integral! }
$$

Implementation

- We can now rank the models by their posterior probabilities.
- However, calculating all posterior probabilities is only possible in small problems. - Example: Predictors x_{1}, x_{2}, x_{3}, using squares and interactions, there are

$$
2^{18}=262,144
$$

models.

- A search algorithm is needed.

Modern search algorithms

- First developed by George and McCulloch (1993) using the Gibbs sampler
- The stochastic search algorithm - "visits" models having high probability
- a ranking of models is obtained o can escape from local modes
- Models are not ranked according to any obvious criterion.
- Here, we want a stochastic search with a stationary distribution proportional to the model posterior probabilities.

Stochastic Search

- Best: calculate all of the posterior probabilities
- Second Best: draw independent samples from a distribution
$P\left(M_{\gamma} \mid \mathbf{y}, \mathbf{X}\right) \propto$ posterior probability
- Can't do either - needs exhaustive calculation of all of the posterior probabilities

Stochastic Search

- Third Best: Construct an MCMC algorithm with
$P\left(M_{\gamma} \mid \mathbf{y}, \mathbf{X}\right) \propto$ posterior probability
as the stationary distribution.
- visits every model
o visits the better models more often
o frequency of visits \propto posterior probabilities.

Metropolis-Hastings

- In theory, construction of the algorithm is easy.
- With the chain is in model M_{γ}, draw a candidate model $M \gamma^{\prime}$.
- Move to this new model with probability

$$
\min \left\{1, \frac{P\left(M_{\gamma^{\prime}} \mid \mathbf{y}, \mathbf{X}\right)}{P\left(M_{\gamma} \mid \mathbf{y}, \mathbf{X}\right)}\right\} .
$$

- This is a reversible ergodic Markov chain with stationary distribution $P\left(M_{\gamma} \mid \mathbf{y}, \mathbf{X}\right)$.

Metropolis-Hastings

- Recall the denominator of

$$
P\left(M_{\gamma} \mid \mathbf{y}, \mathbf{X}\right)
$$

is the same for all γ

- Thus, it cancels out in

$$
\min \left\{1, \frac{P\left(M_{\gamma^{\prime}} \mid \mathbf{y}, \mathbf{X}\right)}{P\left(M_{\boldsymbol{\gamma}} \mid \mathbf{y}, \mathbf{X}\right)}\right\}
$$

- This is good.
- In large problems the denominator sum is not calculable

Candidate Distribution

- We want our candidate distribution to - adequately explore the entire space o not get trapped in local modes - visit models with high posterior probability
- We construct the candidate distribution in two parts

Candidate Distribution

- Write the models as

$$
\begin{aligned}
\mathcal{B} & =\cup_{i} \mathcal{B}_{i} \\
\mathcal{B}_{i} & =\left\{M_{\gamma}: \gamma=\left\{1, \gamma^{\prime}\right\}\right.
\end{aligned}
$$

where γ^{\prime} has i components equal to 1 .

- At iteration t, choose the subset \mathcal{B}_{i} with probability

$$
\begin{aligned}
\hat{P}_{i} & \propto \frac{c}{\log (t+1)}+\sum_{j \in \mathcal{B}_{i}} p_{i j} / \sum_{i j} p_{i j} \\
p_{i j} & =\text { posterior probability }
\end{aligned}
$$

- Update the posterior probabilities.

Candidate Distribution

- Two Pieces:

$$
\hat{P}_{i} \propto \frac{c}{\log (t+1)}+\sum_{j \in \mathcal{B}_{i}} p_{i j} / \sum_{i j} p_{i j}
$$

Insures Mixing

Proportional to
Bayes Factor

Stochastic Search

- At iteration t, choose a candidate model $M_{\gamma^{\prime}}$
- by first selecting \mathcal{B}_{i} according to \hat{P}_{i}
- then selecting γ^{\prime} at random from \mathcal{B}_{i}
- With probability

$$
\min \left\{1, \frac{P\left(M_{\gamma^{\prime}} \mid \mathbf{y}, \mathbf{X}\right)}{P\left(M_{\gamma} \mid \mathbf{y}, \mathbf{X}\right)}\right\}
$$

move to $M_{\gamma^{\prime}}$

Effectiveness of the Stochastic Search

- 10-predictor model

$$
\begin{aligned}
y= & \beta_{0}+\sum_{i=1}^{3} \beta_{i} x_{i}+\sum_{i=1}^{3} \tau_{i} x_{i}^{2} \\
& +\sum_{i>j} \eta_{i j} x_{i} x_{j}+\eta_{i j k} x_{i} x_{j} x_{k}+\varepsilon
\end{aligned}
$$

where x_{i} are $\operatorname{Uniform}(0,10), \varepsilon \sim N\left(0, \sigma^{2}\right)$

- True model is $y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\varepsilon$
- There are $2^{10}=1024$ candidate models
- To check, we calculated all posterior probabilities.

Ozone Data

- First analyzed by Breiman and Friedman (1985)
- Using the $A C E$ algorithm, they identified a set of four predictors $\left\{x_{7}, x_{8}, x_{9}, x_{10}\right\}$
- We use 10 predictor variables
- Only linear terms
- $2^{10}=1024$ models
- exhaustive calculation of posterior probabilities

Ozone Data Linear Predictors

Variables	Posterior Probability	R^{2}	Avg. Pred. Error
x_{6}, x_{7}, x_{8}	0.491	.686	0.992
$x_{1}, x_{6}, x_{7}, x_{8}, x_{10}$	0.156	.699	0.974
$x_{1}, x_{6}, x_{7}, x_{8}, x_{9}$	0.041	.696	0.972
$x_{1}, x_{6}, x_{7}, x_{8}$	0.028	.691	0.964
$x_{1}, x_{4}, x_{6}, x_{7}, x_{8}$	0.027	.694	0.968
$x_{7}, x_{8}, x_{9}, x_{10}$	$<.00001$.669	1.056

- 25 observations held out of the fitting set to compute prediction error.
- Breiman/Friedman identified x_{7} as most important

Ozone Data -All Predictors

- Breiman (2001) remarked that in the 1980s large linear regressions were run, using squares and interaction terms, with the goal of selecting a good prediction model.
- However, the project was not successful because the false-alarm rate was too high.
- We take the full model to be
- all linear, quadratic, and two-way interactions
- $10+10+45=65$ predictors and 2^{65} models
- Search ran for 30, 000 iterations.

Ozone Data -All Predictors

Variables	Post. Prob.	R^{2}	Avg. Pred Error
$\begin{gathered} \left\{x_{2}, x_{1}^{2}, x_{7}^{2}, x_{9}^{2}, x_{1} x_{5}\right. \\ x_{2} x_{6}, x_{3} x_{7}, x_{4} x_{6} \\ \left.x_{6} x_{8}, x_{6} x_{10}\right\} \end{gathered}$	0.214	0.758	0.873
$\begin{gathered} \left\{x_{1} x_{9}, x_{1} x_{10}, x_{4} x_{6}\right. \\ \left.x_{5} x_{8}, x_{6} x_{7}\right\} \end{gathered}$	0.122	0.718	0.908
$\begin{array}{r} \left\{x_{6}, x_{5}^{2}, x_{7}^{2}, x_{9}^{2}, x_{1} x_{10},\right. \\ \left.x_{4} x_{7}, x_{4} x_{8}, x_{5} x_{10}, x_{6} x_{8}\right\} \end{array}$	0.114	0.748	0.818

Ozone Data -All Predictors

- Other models visited with frequencies .02. 10
- The search found a very simple model
- The models tend to use $x_{7}-x_{10}$ more often.
- Somewhat (but not totally) alleviates the problem of overprediction.

Conclusions

- Two distinct parts of a model selection method
- Model selection criterion:intrinsic posterior probabilities
- The model selection criterion was used to direct a stochastic search

Conclusions

- The two parts function well together - Intrinsic posterior probabilities is a good criterion
- The stochastic search algorithm finds the good models
- We note the intrinsic posterior probabilities tend to favor small models.

Conclusions

- Either part of our method can be used in other settings
- For example, we can use other priors to calculate the posterior probabilities for model selection
- and can use other criteria (for example, R^{2}) to direct the stochastic search

Conclusions

- The search algorithm is straightforward Metropolis-Hastings
- The difficulty is to choose a good candidate distribution.
- The candidate must
- find states having large values of the criterion
- escape from local modes to better explore the space.
- The construction proposed here seems to do this.

