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Introduction

•Variable Selection in Normal Regression
Models

•A dependent random variable Y and a set
{X1, ..., Xk} of k potential explanatory
regressors

• Every model with regressors

{Xi1, ..., Xiq}
is a priori a plausible model for Y .

• 2k−1 potential models (intercept always
included).
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Introduction

• Interest here is in model selection.

• If interest is in prediction:

◦ The prediction can be through model
averaging

◦ The selection problem seems to be avoided.

◦ But it may be impossible to compute
every model.
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Introduction

•We will see the Ozone data example, in
which there are 265 possible models.

265 = 36,893,488,147,419,103,232

◦ Before model averaging we must select
models to average.

◦ So prediction will be preceded by model
selection.
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Two Aspects of Model Selection

• The selection mechanism to be criterion-
based and fully automatic

◦Criterion-based selection

� clear understanding of the properties
of the selected models

◦ Fully automatic algorithms

� no tuning parameters, hyperparame-
ters, etc. to estimate

� easy to implement

� no sensitivity analysis needed
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Model Selection
is

Multiple Hypothesis Testing

•must exactly specify the hypotheses for
each model evaluation.

• the evaluation of model M should be

H0 : M = reduced model

vs.

HA : M = model with all predictor variables.

• The full model comes from the subject-
matter, and is the correct reference.
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Model Selection

•We assume that all predictors have some
importance, and examine if a smaller sub-
set is adequate.

• For a Bayesian evaluation, the prior dis-
tribution should be

◦ centered at each H0.

◦ specific to each null model M under
consideration.
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Objective Probabilities

• Since we are not confident about any given
set of explanatory variables, little prior in-
formation on their regression coefficients
could be expected.

• If we were confident about a particular
model, there would be no model selection
problem!
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Objective Probabilities

•With little prior information, an objective
model choice approach is justified.

• Since typical default priors for normal re-
gression are improper, they cannot be used.
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Subjective Bayesian Variable
Selection

•History:

Atkinson(1978)
Smith and Spiegelhalter (1980)
Pericchi (1984)
Poirier (1985)
Box and Meyer (1986)
George and McCulloch(1993,1995, 1997)
Clyde, DeSimone and Parmigiani(1996)
Geweke (1996)
Smith and Kohn (1996)
and others.
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Subjective Bayesian Variable
Selection

• The prior distributions are typically

◦ conjugate priors

◦ some closely related distribution

•Also,

◦ typical to center the priors at zero

◦ the null hypothesis is the model with
no regressors
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Objective Model Selection

•Mitchell and Beauchamp (1988)

◦ regression coefficients a priori iid

◦ prior distribution that concentrates some
probability mass on zero and distributes
the rest uniformly on a compact set.

◦ variable selection problem is essentially
an estimation problem
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Objective Model Selection

• Spiegelhalter and Smith (1982)

◦ used conventional improper priors for
the regression coefficients

◦ analysis based on a formal rather than
an actual Bayes factor

◦ calibrated with subjective information

14



Intrinsic Bayes Factors

•A fully automatic analysis for model com-
parison in regression was given in Berger
and Pericchi (1996).

• They use

◦ encompassing model approach

◦ empirical measure for model compari-
son, the intrinsic Bayes factor
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Evaluating the Models

• Full Model:

y = Xα + ε, ε ∼ Nn(0, σ2In)

• Submodels:

y = Xβγ , ε ∼ Nn(0, σ2
γIn)

where
βγ = α · γ,

and

γi =


0, if αi = 0,
1, otherwise,

for i = 1, ..., k.
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Prior Distributions

• Complete model specification:

Mγ :
Nn(y|Xβγ , σ2

γIn), π(βγ , σγ), γ ∈ Γ
 .

•Default prior on the set of models

P (Mγ) = 2−(k−1), {M γ , γ ∈ Γ}.
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Hypothesis Tests

• Test

H0 : M = Mγ vs. HA : M = M1,

using

P (Mγ |y,X) =

mγ(y,X)

m1(y,X) + ∑
γ∈Γ,γ 6=1 mγ(y,X)

,

to measure the support for H0.
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Hypothesis Tests

•Note that

P (Mγ |y,X) =
Bγ1(y,X)

1 + ∑
γ∈Γ,γ 6=1 Bγ1(y,X)

,

so every posterior probability has the same
denominator.
This will be important in later calcula-
tions.
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Default Priors

•We want a default or “automatic” prior

◦ To remove subjectivity from the choice
of π(β γ , σγ)

◦ to make our procedure automatic
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Default Priors

• The standard default prior is improper

◦ The integral of the marginal is infinite

◦ The Bayes factor can only be computed
up to an arbitrary positive constant that
cannot be determined
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Intrinsic Priors

• Berger and Pericchi (1996)

◦ Fix the impropriety problem

◦ Provide sensible objective proper priors

•Moreno et al. (1998) develop intrinsic
priors further and show

◦ there is an entire class

◦ which one to use
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An Intrinsic Prior for Model
Selection

Lemma 1 The intrinsic prior for α con-
ditional on a fixed point (βγ , σγ) is

πI(α, σ|βγ , σγ) =

Nk(α|βγ , (σ2
γ + σ2)W−1)

1

σγ

1 +
σ2

σ2
γ


−3/2

,

where

◦W = ZtZ

◦Z(k+1)×k is a theoretical design matrix
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The prior of α

πI(α|β γ , σγ) =

∫
Nk(α|β γ , (σ2

γ + σ2)W−1)
1

σγ

1 +
σ2

σ2
γ


−3/2

dσ

•An elliptical multivariate distribution with
mean βγ .
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The prior of α

• The intrinsic prior for α is centered at the
null.

• This property is not shared by many other
variable selection priors.

•Moments ≥ 2 do not exist. This implies
that the intrinsic prior has very heavy
tails, as expected for a default prior.
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Performance of the Intrinsic
Posterior Probabilities

•Are the posterior probabilities a reason-
able tool for finding the true model?

• Example: Full Model

y = β0 + β1x1 + β2x2 + β3x
2
1 + β4x

2
2 + ε,

where ε ∼ N(0, σ2).
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Performance of the Intrinsic
Posterior Probabilities

• The xi values are generated uniformly in
the interval (0, 10)

•We simulated 1000 data sets, with n = 10
and true model {1, 1, 1, 0, 0}:

y = β0 + β1x1 + β2x2 + ε.
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Example: Hald Regression Data

•An ancient and often-analyzed data set

•Measure the effect of heat on the compo-
sition of cement

◦ 13 observations on the dependent vari-
able (heat)

◦ 4 predictor variables (which relate to
the composition of the cement)

◦ 24 = 16 possible models
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Example: Hald Regression Data

◦ Posterior probabilities for the models of
the Hald data.

◦All other models had posterior probabil-
ity less than 0.00001.

Variables Posterior Probability
x1, x2 0.5224
x1, x4 0.1295

x1, x2, x3 0.1225
x1, x2, x4 0.1098
x1, x3, x4 0.0925
x2, x3, x4 0.0120

x1, x2, x3, x4 0.0095
x3, x4 0.0013
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Example: Hald Regression Data

• Comparison to Other Findings

Top Models

Intrinsic Prior Berger/Pericchi Draper/Smith
x1, x2 x1, x2 x1, x2
x1, x4 x1, x4 x1, x4

x1, x2, x3 −−− −−−
x1, x2, x4 −−− x1, x2, x4
x1, x3, x4 −−− −−−
x2, x3, x4 −−−− −−−

x1, x2, x3, x4 −−− −−−
x3, x4 x3, x4 −−−

Berger/Pericchi: “...{x1, x2} is moder-
ately preferred to {x1, x4} and quite
strongly preferred to {x3, x4}”.
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Example: Hald Regression Data

• Comparison to Other Findings

• Stochastic search of George and McCul-
loch (1993)

◦ visited {x1, x2} less that 7% of the time.

◦ selected as the best model the intercept-
only model

◦ possibly a consequence of using the no-
regressors-model (not even an intercept)
as the null model
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Calculating the Posterior
Probabilities

• Computation is relatively easy

• The matrix W−1 is

W−1 =
1

L

L∑
`=1

(Zt(`)Z(`))−1,

where {Z(`), ` = 1, ..., L} is the set of all
submatrices of X of order (k + 1) × k of
rank k, a training sample of minimal size.
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Calculating the Posterior
Probabilities

•Using a polar transformation, the Bayes
factor can be written

Bγ1(y,X) =
|Xt

1γX1γ |1/2(yt(In −Hγ)y)(n−kγ+1)/2Iγ
−1
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Calculating the Posterior
Probabilities

Hγ = X1γ(Xt
1γX1γ)−1Xt

1γ ,

Iγ =
∫ π/2
0

|B(ϕ)|
1
2dϕ

|Aγ(ϕ)|
1
2Eγ(ϕ)

n−kγ+1
2

B(ϕ) = [(sin2 ϕ)In + XW−1Xt]−1,

Aγ(ϕ) = Xt
1γB(ϕ)X1γ

Eγ(ϕ) = yt
B(ϕ) −B(ϕ)X1γA−1

γ (ϕ)Xt
1γB(ϕ)

 y

The important point is that there is only
one integral!
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Implementation

•We can now rank the models by their pos-
terior probabilities.

•However, calculating all posterior proba-
bilities is only possible in small problems.

◦ Example: Predictors x1, x2, x3, using
squares and interactions, there are

218 = 262, 144

models.

◦A search algorithm is needed.
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Modern search algorithms

• First developed by George and McCulloch
(1993) using the Gibbs sampler

• The stochastic search algorithm

◦ “visits” models having high probability

◦ a ranking of models is obtained

◦ can escape from local modes

•Models are not ranked according to any
obvious criterion.

•Here, we want a stochastic search with
a stationary distribution proportional to
the model posterior probabilities.
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Stochastic Search

• Best: calculate all of the posterior proba-
bilities

• Second Best: draw independent samples
from a distribution

P (Mγ |y,X) ∝ posterior probability

• Can’t do either - needs exhaustive calcu-
lation of all of the posterior probabilities
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Stochastic Search

• Third Best: Construct an MCMC algo-
rithm with

P (Mγ |y,X) ∝ posterior probability

as the stationary distribution.

◦ visits every model

◦ visits the better models more often

◦ frequency of visits ∝ posterior proba-
bilities.
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Metropolis-Hastings

• In theory, construction of the algorithm is
easy.

◦With the chain is in model Mγ , draw
a candidate model M γ ′.

◦Move to this new model with probabil-
ity

min

1,
P (Mγ ′|y,X)

P (Mγ |y,X)

 .

• This is a reversible ergodic Markov chain
with stationary distribution P (Mγ |y,X).
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Metropolis-Hastings

•Recall the denominator of

P (Mγ |y,X)

is the same for all γ

• Thus, it cancels out in

min

1,
P (Mγ ′|y,X)

P (Mγ |y,X)

 .

◦ This is good.

◦ In large problems the denominator sum
is not calculable
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Candidate Distribution

•We want our candidate distribution to

◦ adequately explore the entire space

◦ not get trapped in local modes

◦ visit models with high posterior proba-
bility

•We construct the candidate distribution
in two parts
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Candidate Distribution

•Write the models as

B = ∪iBi

Bi = {Mγ : γ = {1, γ′}
where γ′ has i components equal to 1.

•At iteration t, choose the subset Bi with
probability

P̂i ∝
c

log(t + 1)
+

∑
j∈Bi

pij/
∑
ij

pij

pij = posterior probability

•Update the posterior probabilities.
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Candidate Distribution

• Two Pieces:

P̂i ∝
c

log(t + 1)
+

∑
j∈Bi

pij/
∑
ij

pij

Insures Mixing Proportional to
Bayes Factor
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Stochastic Search

•At iteration t, choose a candidate model
Mγ ′

◦ by first selecting Bi according to P̂i

◦ then selecting γ′ at random from Bi

•With probability

min

1,
P (Mγ ′|y,X)

P (Mγ |y,X)


move to Mγ ′
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Effectiveness of the Stochastic
Search

• 10−predictor model

y = β0 +
3∑

i=1
βixi +

3∑
i=1

τix
2
i

+
∑

i>j
ηijxixj + ηijkxixjxk + ε,

where xi are Uniform (0, 10), ε ∼ N(0, σ2)

• True model is y = β0 + β1x1 + β2x2 + ε

• There are 210 = 1024 candidate models

• To check, we calculated all posterior prob-
abilities.
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Ozone Data

• First analyzed by Breiman and Friedman
(1985)

•Using the ACE algorithm, they identified
a set of four predictors {x7, x8, x9, x10}
•We use 10 predictor variables

◦Only linear terms

◦ 210 = 1024 models

• exhaustive calculation of posterior proba-
bilities
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Ozone Data Linear Predictors

Variables Posterior R2 Avg.
Probability Pred. Error

x6, x7, x8 0.491 .686 0.992
x1, x6, x7, x8, x10 0.156 .699 0.974
x1, x6, x7, x8, x9 0.041 .696 0.972

x1, x6, x7, x8 0.028 .691 0.964
x1, x4, x6, x7, x8 0.027 .694 0.968
x7, x8, x9, x10 < .00001 .669 1.056

• 25 observations held out of the fitting set
to compute prediction error.

• Breiman/Friedman identified x7 as most
important
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Ozone Data -All Predictors

• Breiman (2001) remarked that in the 1980s
large linear regressions were run, using
squares and interaction terms, with the
goal of selecting a good prediction model.

•However, the project was not successful
because the false-alarm rate was too high.

•We take the full model to be

◦ all linear, quadratic, and two-way inter-
actions

◦ 10 + 10 + 45 = 65 predictors and 265

models

• Search ran for 30, 000 iterations.
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Ozone Data -All Predictors

Variables Post. R2 Avg. Pred.
Prob. Error

{x2, x
2
1, x

2
7, x

2
9, x1x5, 0.214 0.758 0.873

x2x6, x3x7, x4x6,
x6x8, x6x10}

{x1x9, x1x10, x4x6, 0.122 0.718 0.908
x5x8, x6x7}

{x6, x
2
5, x

2
7, x

2
9, x1x10, 0.114 0.748 0.818

x4x7, x4x8, x5x10, x6x8}
• Top three models
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Ozone Data -All Predictors

•Other models visited with frequencies .02−
.10

• The search found a very simple model

• The models tend to use x7 − x10 more
often.

• Somewhat (but not totally) alleviates the
problem of overprediction.
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Conclusions

• Two distinct parts of a model selection
method

◦Model selection criterion:intrinsic pos-
terior probabilities

◦ The model selection criterion was used
to direct a stochastic search
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Conclusions

• The two parts function well together

◦ Intrinsic posterior probabilities is a
good criterion

◦ The stochastic search algorithm finds
the good models

•We note the intrinsic posterior proba-
bilities tend to favor small models.
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Conclusions

• Either part of our method can be used
in other settings

◦ For example, we can use other priors
to calculate the posterior probabili-
ties for model selection

◦ and can use other criteria (for exam-
ple, R2) to direct the stochastic search
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Conclusions

• The search algorithm is straightforward
Metropolis-Hastings

• The difficulty is to choose a good can-
didate distribution.

• The candidate must

◦ find states having large values of the
criterion

◦ escape from local modes to better ex-
plore the space.

• The construction proposed here seems
to do this.
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