
 25

Types of DNA variants

• Mutation: rare DNA variant, often associated with 
disease

• Polymorphism: common (>1%):
• deletion, insertion or substitution of 1 or more DNA nucleotides

• coding or non-coding region

• may or may not alter function or expression level of encoded proteins

• commonest: Single Nucleotide Polymorphism (SNP, or “snip”); 
?>3,000,000 SNPs in “the” human genome

 

AND FINALLY . . . THE DATA FLOOD 
 
One of the major themes brought out by the workshop was the interplay between theory 
and data, but the discussions above have not mentioned how much data must be dealt 
with.  The magnitude of the data sets actually creates their own statistical problems (just 
due to their size). 
  
As an example, Dan Roden of Vanderbilt University reported on research the original 
goal of which was to use genetics to predict individual responses to drugs.  However, the 
research quickly evolved into a challenge of navigating through a massive data set. 
Pharmacologists are very interested in understanding why individuals have different 
responses to the same drugs, and how to predict those variations.  The variability in drug 
response can correlate with a variety of factors, such as gender, age, disease types, 
concomitant drug therapies, and ethnicity. 
 
Variability in drug response among different individuals may also be due to genetic 
factors.  Each person has two strands of DNA in their genome, shown as two panels in 
Figure 19.  At particular genome locations, the DNA sequences might differ between any 
two people.  Such a difference, called a DNA polymorphism, might be associated with 
the occurrence of side effects in a given individual. 
 

Mutation is one of 
the factors causing 
DNA 
polymorphisms, and 
which therefore 
contributes to disease 
onset.  DNA 
polymorphisms may 
be due to the 
deletion, insertion, or 
substitution of a 
nucleotide, may 
occur at coding or 
non-coding regions 
of the DNA, and 
may or may not alter 

gene function.  The occurrence of DNA polymorphism makes it possible to associate a 
person’s response to drugs with particular DNA regions, for example, by correlating the 
occurrence of the polymorphism with the response.  This is the basis of current 
phamacogenetics, which is the study of the impact of individual genetic variants on drug 
response. 
 
Roden’s research sought to evaluate the role of genetics in determining drug response in 
the case of a single nucleotide polymorphism (SNP) that is known to predispose 

Figure 19:  Types of DNA Variants  
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One view of a pharmacogenomic  
experiment 

• Calculate a  χ 2 statistic at each polymorphic  
location: genotype A/B vs affected Y/N 

• look for  regions with high scores: 

χ 2 

location on genome 

 

individuals to drug-induced arrhythmias.  He approached the problem with the following 
strategy: 
 

• Define the drug response (phenotype) of interest 
• Accumulate patients/DNA/families 
• Identify candidate genes that might explain significant response variations 
• Identify polymorphisms in candidate genes  
• Relate the identified polymorphism to the phenotype   

 
Such an analysis would 
produce a graph like that in 
Figure 20, where the c2 
statistic would be calculated 
at each SNP.  However, such 
an analysis is actually 
infeasible for both statistical 
and economic reasons, 
because of the “data flood.”  .  
Suppose the research has 
considered 100,000 SNPs in 
1,000 patients (500 affected, 
500 not affected).  The 
statistical problem is that the 
data will result in 100,000 c2 

statistics.  With such a multiplicity of tests, there will be many false positives.  How then 
does one set a sensible cutoff point for statistical significance? 
 
Even if the statistical problem can be solved, basic economics makes this straightforward 
experiment infeasible because of the tremendous cost of recording 100,000 genotypes in 
each of a thousand people.  (If the cost of determining a genotype were only 50 cents, the 
entire experiment would still require $50 million.) 
 
Therefore, there is a pressing need to solve the problem of handling the bioinformatics 
data flood. 
 
The data flood pointed out by Roden is only one example of the data handling challenges 
to be overcome.  With the development of microarray experiments, the amount of data 
available today is enormous.  At the April 2001 workshop, Terry Speed of the University 
of California at Berkeley gave an overview of microarray experiments, which provide a 
means of measuring expression levels of many genes in parallel.   

Figure 20:  Data from a Hypothetical Pharmacogenomic Experiment 
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In the so-called Stanford protocol, genetic material from cells is apportioned into two 

samples, each of which 
is exposed to a different 
treatment.  (One of the 
treatments might be the 
null treatment, in which 
case we are comparing a 
treated sample to a 
control.)  The goal is to 
determine how the two 
samples differ in the way 
their genes are 
“expressed”that is, 
how the genes cause 
proteins to be created in 
accordance with their 
embedded genetic 
information.  One 

sample is labeled with a red dye and the other with a green dye.  The two samples are 
distributed over a microarray slide (a “gene chip”), which typically has 5000-6000 
different segments of complementary DNA (cDNA) arrayed on it.  The two samples of 
red- and  green-dye-tagged genetic material adhere to the slide in different patterns 
according to their chemical bonding to the cDNA.  When the dyed genetic material is 
allowed to express proteins, the level of activity at each coordinate of the gene chip can 
be measured through the fluorescence of the dyes.  From these measurements, one can 
develop understanding of how the genetic material was affected by the treatment to 
which it was exposed.  More complete background on this process, and a number of 
valuable other links, may be found 
athttp://www.stat.Berkeley.EDU/users/terry/zarray/Html/index.html. 
 
Many statistical issues arise in the analysis of microarray data, including issues of 
experimental design, data pre-processing, and arriving at ultimate conclusions. For 
example, the typical range of expression (on a log2 scale) is about +- 5, and the amount of 
background noise in the data could be substantial. Thus, at present, it is usually possible 
to identify (with some certainty) only those genes that express at a very high or very low 
level. 
 
Although there are problems with expression levels, and also with bias, a plot of M vs. A, 
where  
 
 
 
 
can be extremely useful, as in the following experiment described by Speed that 
identified genes with altered expression between two physiological zones (“zone 1” and 

M=log2 (red expression) – log2 (green expression) 
A= log2 (red expression) + log2 (green expression) 

Figure 21:  Microarray construction 
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Estimates of zone effects  log(zone 4 / zone1) vs ave A

gene A

gene B

= average log � (R*G)

“zone 4”) of the olfactory epithelium in mice.  Figure 22 shows the log ratios plotted 
against the average of the 
logs (which gives a 
measure of absolute 
expression). It illustrates 
the noise level in much of 
the data.  It also shows 
that a number of genes 
have very high expression 
levels, and that these 
genes show differential 
expression.   
 
can be extremely useful, 
as in the following 
experiment described by 
Speed that identified 
genes with altered 

expression between two physiological zones (“zone 1” and “zone 4”) of the olfactory 
epithelium in mice. Figure 19 shows the log2 ratios plotted against the average of the logs 
(which gives a measure of absolute expression).  It illustrates the noise level in much of 
the data.  It also shows that a number of genes have very high expression levels, and that 
these genes show differential expression.   
 
 
 
Summarizing, Speed outlined some challenges to current research, such as: 
 

• How to deal with the observed bias associated with whether a sample is treated 
with red or green dye (which suggest the need to run the complementary 
experiment of interchanging the red and green labels); 

• How to create better designs for microarray experiments, ones that extend beyond 
merely comparing treatment versus control;  

• How to carry out the experiments’ pre-processing so as to reduce the noise in the 
data; and  

• How to deal with the fact that, because of the large number of genes tested in 
microarray experiments, the large number of statistical tests carried out in parallel 
greatly increases the chance of finding a false positive.  (See, for example Tusher, 
et al. (2001), which uses the false discovery rate to set cutoff points for these 
errors.)   

  
 

 
SUMMARY 

 

Figure 22:  Estimates of Zone Effects  
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Throughout the workshop there was much lively discussion from the participants, and 
there were also two prepared discussants who greatly helped in identifying major themes 
and challenges for the future.  Before summarizing the thoughts of discussants Jim 
Keener and Keith Worsley, and other comments, we first note that there has been a big 
cultural change in mathematics and statistics in the past few years.  In the past, 
development of theory would precede the collection of data.  Now, in many areas, data 
drives the development of theory.  This is especially true with mathematical sciences 
research related to the biomedical sciences.  
 
The mathematical sciences have benefited areas of biomedical research by 
 

• Suggesting insights that could not be observed directly (such as “viewing” the 
interior of the beating heart via a simulation); 

• Classifying and describing generic features and processes of biomedical systems); 
and 

• Suggesting how some biomedical systems work and their limitations (through 
tools such as dynamical analysis of mathematical models that emulate cell 
signaling networks). 

 
The major challenge to be overcome before the interface between the 
mathematical and biomedical sciences reaches its potential is to ensure that   more 
mathematical scientists are exposed in depth to research in the biomedical 
sciences and given the means to contribute.  An important step in that direction is 
that mathematical formulations of important biomedical research be more widely 
available.   
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Appendix 
Workshop Program 

 
 
 
 
 

Dynamical Modeling of Complex Biomedical Systems 
Holiday Inn-Georgetown 

2101 Wisconsin Ave., Washington, D.C. 
April 26-28, 2001 

 
 
Thursday, April 26 (p.m.) 
(Kaleidoscope Room) 
12:00 Lunch available at workshop site 
 

Overview Session---Part 1 
1:00-1:30  Eduardo Marban (John Hopkins Univ.), “Gene Transfer/Gene Therapy” 
 
1:30-2:00  Terry Speed (Berkeley), “Statistics and Microarray Data” 
 
2:00-3:00  Open discussion 
De Witt Sumners (Florida State), moderator 
 
3:00-3:30 Break 
 
 

Mathematical Sciences and Disease States---Part 1 
3:30-4:00  Charles Peskin (NYU) "A Virtual Heart for Pathophysiology and Prosthesis 
Design" 
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4:00-4:30  James Weiss (UCLA), "Biological Pattern Formation: From Arrhythmias to 
Embryos" 
 
4:30-5:30  Open discussion 
De Witt Sumners (Florida State), moderator 
James Keener (Univ. of Utah), summarizer 
 
5:30-6:30 Reception  (Mirage II) 
 
 
Friday, April 27 
(Kaleidoscope Room) 
8:00 am  Continental Breakfast 
 

Overview Session---Part 2 
8:30-9:00  Michael Phelps (UCLA), “Genetic Engineering, Molecular Imaging, and 
Molecular Drug Design” 
 
9:00-9:30  Douglas Lauffenburger (MIT), "Cell Engineering: Quantitative Modeling and 
Experimental Studies of How Cell Functions Depend on Molecular Properties" 
 
9:30-10:30  Open discussion 
Jim Weiss (UCLA), moderator 
 
10:30-11:00 Break 
 
 

Mathematical Sciences and Disease States---Part 2 
11:00-11:30  Dan Roden (Vanderbilt), “Using Genetics to Predict Individual Responses 
to DrugsHope or Hype?”  
 
11:30-12:00  Bruce Levin (Emory University), "Mathematical Models of the Population 
Dynamics of Antibiotic Therapy" 
 
12:00-1:00  Open discussion 
Jim Weiss (UCLA), moderator 
James Keener (Univ. of Utah), summarizer 
 
1:00-2:00 Lunch 
 
 

Dynamical Models of Cellular Processes 
2:00-2:30  John Tyson (Virginia Tech), " CyberYeast:  A Computational Model of Cell 
Cycle Regulation in Budding Yeast " 
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2:30-3:00  Byron Goldstein (Los Alamos), “Modeling Immunoreceptor Signaling: From 
the Generic to the Detailed” 
 
3:00-3:30  Garrett Odell (Univ. Washington), title to be determined 
 
3:30-4:00  George Oster (Berkeley), “The Mysterious Meanderings of Myxobacteria” 
 
4:00-5:30  Open discussion 
Iain Johnstone (Stanford), moderator 
Leon Glass (McGill Univ.), summarizer 
 
5:30-6:30 Reception  (Kaleidoscope Room) 
 
Saturday, April 28 
(Kaleidoscope Room) 
8:30 am  Continental Breakfast 
 

Neuroscience 
9:00-9:30  John Rinzel (NYU), “Modeling the Thalamus in Sleep and Awake States” 
 
9:30-10:00  Don Johnson (Rice Univ.), "Information Processing: Data Analysis and 
Theory" 
 
10:00-10:30  Larry Abbott (Brandeis University), "The Effects of Noise on Neural 
Response Dynamics and Gain" 
 
10:30-11:00  Emery Brown (Harvard Medical School), "Dynamics of Spatial Information 
Encoding in the Rat Hippocampus" 
 
11:00-12:30  Open discussion 
Peter Bickel (Berkeley), moderator 
Keith Worsley (McGill Univ.), summarizer 
 
12:30   Adjourn 
 
 
Program committee:   Peter Bickel, University of California at Berkeley 
   David Galas, Keck Graduate Institute 
   David Hoel, Medical University of South Carolina 
   Iain Johnstone, Stanford University 
   Alan Perelson, Los Alamos National Laboratory 
   De Witt Sumners, Florida State University 
   James Weiss, University of California at Los Angeles 
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