
 10

Ne ura l re pre se nta tion o f information

➠ Information represented by whe n spikes occur either 
in single neuron responses

t

10 ms

t

or, more importantly, 
jointly in population (ensemble) neural responses

➠Need a theoretical framework for analyzing and 
predicting how well neurons convey information

 

PROBABILITISTIC MODELS FOR BIOLOGICAL OBSERVATIONS  
 
One of the common major goals of the work described in the previous section was the 
derivation of simple models to help understand complex biological processes.  As these 
models evolve, they not only can help us understand, but also they suggest aspects that 
experimental methods alone may not.  In part, this is because the mathematical model 
allows for greater control of the (simulated) environmental conditions.  This control 
allows the researcher to, for example, identify stimulus-response patterns in the 
mathematical model whose presence, if verified experimentally, can reveal important 
insight about the intracellular mechanisms.  
 
At the workshop, John Rinzel of New York University explained how he had used a 
system of differential equations and dynamical systems theory to model the neural 
signaling network that seems to control the onset of sleep.  Rinzel’s formulation sheds 
light on the intrinsic mechanisms of nerve cells, such as repetitive firing and bursting 
oscillations of individual cells, and the models were able to successfully mimic the 
patterns exhibited experimentally.  More detail may be accessed through his web page at 
http://www.cns.nyu.edu/corefaculty/Rinzel.html.  
 
In another approach, based on point processes and signal analysis techniques, Don 
Johnson of Rice University formulated a model for the neural processing of information.  
When a neuron receives an input (an increase in voltage) on one of its dendrites, a spike 
wavea brief, isolated pulse having a characteristic waveformis produced and travels 
down the axons to the pre-synaptic terminals (see Figure 7).  The spike waves occur 
randomly in time, and sensory information in the nervous system is embedded in the 
timing of the spike waves. These spikes are usually modeled as point processes; however, 
these point processes have a dependence structure and, because of the presence of a 
stimulus, are non-stationary.  Thus, non-Gaussian signal processing techniques are 
needed to analyze data recorded from sensory neurons to determine what aspects of the 
stimulus are being emphasized and how emphatic that representation might be.  

 
Johnson 
developed the 
necessary signal 
processing 
techniques and 
applied them to 
the neuron spike 
train.    Details 
may be found in  
Johnson, et al. 
(2000), and also 

Figure 7:  Neural Representation of Information 
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http://www.ece.rice.edu/~dhj/#auditory.  This theory can be extended to an ensemble of 
neurons receiving the same input, and under some mild assumptions the information can 
be measured with increasing precision as the ensemble size increases.   
 

Larry Abbott of 
Brandeis 
University also 
explored the 
characteristics of 
neuron signals.  
At the workshop, 
he presented 
research on the 
effect of noise as 
an excitatory 
input to obtain a 
neural response, 
and his methods 
took advantage 
of the difference 
between in vivo 
measurements 
and in vitro 

measurements.  His work counters one of the most widely spread misconceptions, that 
conductance alone changes the neural firing rate.  Instead, a combination of conductance 
and noise controls the rate. As Figure 8 shows, although a constant current produces a 
regular spike train in vitro, this does not happen in vivo, where there is variance in the 
response, thus more noise in the signal.   
 
It is of great interest to study the input and output relations in a single neuron, which has 
more than 10,000 excitatory and inhibitory inputs. Let I denote the mean input current, 
which measures the difference between activation and inhibitory status, and let sI

2 be the 
input variance. For an output with a mean firing rate of r, neuroscientists typically study 
the output’s sv

2 and coefficient of variation CV.  Abbott also studies the gain dr/dl. See 
Figure 9.  The standard view is that  
 
� the mean input I controls the mean output r, and 
� the variance of the input affects sv

2and CV.  
 
Abbott disputes the second part and concludes that the noise channel also carries 
information about the firing rate r.  To examine this dispute, Abbott carried out in vitro 
and in vivo current injection experiments. 

Figure 8:  Neural Responses  
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10,000 excitatory & inhibitory inputs: 
  I = mean 
  σΙ2 = variance

Output:
 r = mean 
 σV2 = variance 
 CV = coefficient of variation

gain = dr
dI
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+ gI*(EI-Vm)
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In the first experiment, an 
RC circuit receiving 
constant current was 
studied. Such a circuit 
can be represented with a 
set of linear equations 
that can be solved 
analytically.  The result 
from this experiment 
showed that the output 
variance increases as 
input variance increases, 
and that it reaches an 
asymptote at large sI

2. 
The firing rate r increases 
as the input I increases 
and the CV decreases as r 

increases. 
 
Abbott’s second experiment studied real neurons in an artificial environment:  laboratory-
generated signals were used as the input to actual neurons in vivo (see Figure 10). Both 
excitatory and inhibitory inputs (gE and gI), at different voltages, combine to create the 
input I that is fed into the neuron (blue triangle in Figure 10).  Through this experiment it 

was shown that the 
mean of the input 
affects the rate but 
that the variance of 
the input is not 
correlated with the 
variance of the output.  
Instead, the input 
variance acts more 
like a volume control 
for the output, 
affecting the gain of 
the response.   
 
Dayan and Abbott 
(2001) contains more 
detail on this subject. 
 

 
The workshop’s last foray in neuroscience was through the work of Emery Brown of the 
Harvard Medical School, whose goal was to answer two questions: 
 

Figure 9:  Neural Input and Output  

Figure 10:  Neural Stimuli  
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• Do ensembles of neurons in the rat hippocampus maintain a dynamic 
representation of the animal’s location in space? 

• How can we characterize the dynamics of the spatial receptive fields of neurons in 
the rat hippocampus? 

 
The hippocampus is the area in the brain that is responsible for short-term memory, so it 
is reasonable to assume that it would be active when the rat is in a foraging and exploring 
mode.  For a given location in the rat’s brain, Brown postulated that the probability 
function describing the number of neural spikes would follow an inhomogeneous Poisson 
process,  
 
 
 
 
where l(t) is a function of the spike train and locationover the time interval (0,t).  (Brown 
has later generalized this to an inhomogeneous Gamma distribution.)  Given this 
probability density of the number of spikes at a given location, we next assume that the 
locations x(t) vary according to a Gaussian spatial intensity function given by 
 
 
 
where m is the center, W is the variance matrix, and exp{a} is a scaling constant. 
 
This model was fit to data, and an experiment was run to see how it performed.  In the 
experiment, a rat that had been trained to forage for chocolate pellets scattered randomly 
in a small area was allowed to do so while data on spike and location were recorded.  The 
model was then used to predict the location of brain activity and validated against the 
actual location.  The agreement was reasonable, with the Poisson prediction interval 
covering the actual rate of activation 37% of the time and the inhomogeneous Gamma 
covering it 62% of the time.  Brown concluded that the receptive fields of the 
hippocampus display dynamic behavior even when doing well-learned tasks in a familiar 
environment and that the model, using recursive state-space estimation and filtering, can 
be used to analyze the dynamic properties of this neural system.  More information about 
Brown’s work may be found at 
http://neurostat.mgh.harvard.edu/brown/emeryhomepage.htm. 
 
 

MODELING WITH COMPARTMENTS  
 
Turning to other modeling domains, Lauffenberger of MIT proposed to the workshop 
participants a simple taxonomy of modeling according to what discipline and goal is 
uppermost in the researcher’s mind: 
 

• Computer simulationused primarily to mimic behavior so as to allow the 
manipulation of a system that is suggestive of real biomedical processes; 

Prob(k Spikes) = e-l(t)
l(t) k/k! , 

 

f(x(t)) = exp{a - ½[x(t)-m]TW-1[x(t)-m]}, 
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• Mathematical metaphorused to suggest conceptual principles by approximating 
biomedical processes with mathematical entities that are amenable to analysis, 
computation, and extrapolation; and 

• Engineering designused to emulate reality to a degree that provides real 
understanding that might guide bioengineering design. 

 
Byron Goldstein of Los Alamos National Laboratory presented work that he thought fell 
under the first and third of these classifications. He described mathematical models used 
for studying immunoreceptor signaling that is initiated by different receptors in general 
organisms.  He argued that general models could be effectively used to address detailed 
features in specific organisms.  
 
Many important receptorsincluding growth factor, cytokine (which promote cell 
division), immune response, and killer cell inhibitory receptorsinitiate signaling 
through a series of four biological steps, each having a unique biological function.  
Building on work of McKeithan (1995) that proposed a generic model of cell signaling, 
Goldstein developed a mathematical model for T-cell receptor (TCR) internalization in 
the immunological synapse.  Goldstein’s model takes different contact areas into account 
and was used to predict TCR internalization at 1 hour for the experiments in Grakoui et 
al. (1999). 
 
To date, the major effort in cell signaling has been to identify the molecules (e.g., ligands, 
receptors, enzymes, adapter proteins) that participate in various signaling pathways and, 
for each molecule in the pathway, determine which other molecules it interacts with.  As 
the number of participating molecules has grown and new regulation mechanisms have 
been discovered, it has become clear that a major problem will be how to incorporate this 
information into a useful predictive model. 
 
To have any hope of success, such a model must constantly be tested against 
experiments.  What makes this possible is the ability of molecular biologists to create 
experimental systems containing only small numbers of signaling molecules.  Thus, 
separate parts of the model can be tested directly. 
 
Where are we at the moment in our attempt to build a detailed model of cell signaling? 
Goldstein has used two complementary approaches, deterministic and stochastic, to 
create detailed models of cell signaling: 
 
(i) An algorithm has been created to generate the chemical rate equations that 

describe the dynamics of the average concentrations of chemical species involved 
in a generic signaling cascade; 

(ii) A stochastic model for the time dependence of the state concentrations has been 
developed, and it has been shown that the stochastic and deterministic 
formulations agree in the cases studied to date; and 

(iii) A model has been created for the signaling cascade that is mediated by the 
immunoreceptor that plays a central role in allergic reactions.  This model 
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includes a bivalent ligand, a monovalent receptor,  and the first two enzymes in 
the cascades, Lyn and Syk. 

 
Additional information on Goldstein’s modeling may be found at 
http://www.t10.lanl.gov/profiles/goldstein.html. 
 
Moving from intracellular processes, Bruce Levin of Emory University presented some 
research that uses mathematical models to understand trends in antibiotic resistance, a 
major public health concern worldwide.  Levin is addressing the need to know what 
trends are and are not of serious importance.  As an example, he noted that resistance to 
vancomycin (an antibiotic) increased from approximately 1% in 1989 to 16% in 1997.  It 
does not necessarily follow, though, that this is a serious problem.  As is stated in 
Lipsitch  et al. (2000) : 
 

Although it generally is assumed that use of a particular antibiotic will be 
positively related to the level of resistance to that drug… it is difficult to 
judge whether an intervention has been successful…  Mathematical 
models can provide such quantitative predictions, which naturally give 
rise to criteria for evaluating the interventions . . . 

 
Population dynamics can be examined with a compartment model as shown in Figure 10.  
The compartments represent the disease state of the individual (S=susceptible, IS= 
immune/susceptible, IR=immune/resistant).  The proportion, p, are those under treatment, 
and the parameters represent the rate of movement from one compartment to another. 
Based on such a model, one can calculate parameters such as basic reproductive numbers 
and then establish rates and conditions under which the percent of resistance will increase 
when a proposed treatment is applied.  What is often observed in public health is that the 
rate of resistance changes as the efficacy of the treatment changes, with high efficacy 
corresponding to high resistance, and the rate of resistance increases more rapidly than it 

decreases.    
To further investigate 
how a host controls 
infection, Levin 
examined E.coli 
infection in mice, 
where the following 
threshold effect has 
been observed 
experimentally:  
while high doses of E. 
coli kill mice, lower 
doses can be brought 
under control. A 
differential equations 
model was developed 
that includes this 

Figure 11:  Compartment Model for the Epidemiology of the 
Antibiotic Therapy of Prophylaxis 
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threshold effect, and it was found to fit the data quite well.  Levin’s results again illustrate 
one of the common themes of the workshop, that a mathematical modelbuilt on a 
functional premise, even if simple, and verified with datagives us a way of quantifying 
biophysical processes in a way that can lead to valuable insight about the underlying 
structure of the processes.   
 


