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Summary. In this article, we propose a generalized estimating equations (GEE) approach for correlated ordinal or nominal
multinomial responses using a local odds ratios parameterization. Our motivation lies upon observing that: (i) modeling the
dependence between correlated multinomial responses via the local odds ratios is meaningful both for ordinal and nominal
response scales and (ii) ordinary GEE methods might not ensure the joint existence of the estimates of the marginal regression
parameters and of the dependence structure. To avoid (ii), we treat the so-called “working” association vector α as a “nuisance”
parameter vector that defines the local odds ratios structure at the marginalized contingency tables after tabulating the
responses without a covariate adjustment at each time pair. To estimate α and simultaneously approximate adequately possible
underlying dependence structures, we employ the family of association models proposed by Goodman. In simulations, the
parameter estimators with the proposed GEE method for a marginal cumulative probit model appear to be less biased and
more efficient than those with the independence “working” model, especially for studies having time-varying covariates and
strong correlation.

Key words: Association models; Generalized estimating equations; Local odds ratios; Longitudinal data analysis;
Multinomial responses.

1. Introduction
Liang and Zeger (1986) originally proposed the generalized
estimating equations (GEE) method as an extension of gen-
eralized linear models to handle longitudinal data. In con-
trast to ordinary maximum likelihood approaches, the GEE
method provides consistent estimators of the marginal regres-
sion parameter vector β and of the covariance matrix of those
estimates even if α, the parameter vector that describes the
correlation/association pattern within the subjects, has been
misspecified.

Application of the GEE method for correlated multinomial
responses with at least three response categories has been in
need of further development. One reason relates to difficult
issues in parameterizing the association structure in a way
that is sensible for categorical response variables, and in par-
ticular, is suitable for both nominal and ordinal variables. In
the relevant literature, a correlation coefficient (Lipsitz, Kim,
and Zhao, 1994; Miller, Davis, and Landis, 1993; Parsons,
Edmondson, and Gilmour, 2006) and a global odds ratios
(Williamson, Kim, and Lipsitz, 1995; Heagerty and Zeger,
1996; Lumley, 1996) parameterization for α have been pro-
posed. The correlation coefficient parameterization is severely
restricted by the marginal model even for bivariate multino-
mial responses, as we show in Section 2, while the use of a
global odds ratios parameterization is limited to ordinal re-
sponses. To this end, note that the use of the GEE approach of
Parsons et al. (2006) is restricted to ordinal responses under a
marginal cumulative logistic model. Another difficult issue is

that mere modeling of the marginal probabilities and the pair-
wise association pattern might not lead to a proper joint dis-
tribution for the correlated multinomial responses (Bergsma
and Rudas, 2002). Although existing GEE approaches avoid
specification of this distribution by adopting a “working” as-
sumption for α, it is implicit that such a distribution ex-
ists with respect to the marginal model specification and the
“working” assumption made for the association pattern. In
Section 2, we argue that this need not be true, and hence the
asymptotic properties of the GEE estimator of β might be
affected.

A simple way to deal with these issues is to recognize α

as a “nuisance” vector that minimizes/maximizes an objec-
tive function (Crowder, 1995) such that larger values of α

indicate stronger underlying association patterns (Chaganty
and Joe, 2004) regardless of the response scale or the marginal
model. The aforementioned problems of the GEE method are
avoided because α is not formally defined as an association
vector, while a maximization process ensures the existence of
α. Also, it is desirable to express α using parameters that mea-
sure the association between multinomial responses but are
less restrictive than those used in existing GEE approaches.
Based on these considerations, we propose a unified GEE
approach for correlated nominal or ordinal multinomial re-
sponses using a local odds ratios parameterization for α. The
local odds ratios have been widely used to summarize asso-
ciation in contingency tables but have never been employed
in the GEE context.
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In particular, we identify α as the marginalized local odds
ratios after cross-classifying the responses at each time pair,
with the degree of association in these contingency tables
providing information about the true association pattern.
We model the association in the marginalized tables using
association models (see Goodman, 1985), which enable us
to reduce the dimension of α by imposing meaningful local
odds ratio structures both for ordinal and nominal response
categories. The association models employed are special
cases of Goodman’s row and column effects (RC) model
with homogeneous score parameters. For a pair of responses,
consider an I × I table in which cell (j, j′) presents the
probability of response outcome at row j and at column j′.
Denote by θjj′ the local odds ratio at the cutpoint (j, j′). The
homogeneous RC model assumes that

log θjj′ = φ(μj − μj+1)(μj′ − μj′+1) (1)

for j, j′ = 1, . . . , I − 1. After imposing identifiability con-
straints, relation (1) decomposes the local dependency into
two parts: the scores {μj : j = 1, . . . , I} for the I response
categories, and the intrinsic parameter φ that describes
the strength of association. For ordinal responses, a fixed
unit-spaced scores assignment is often sensible, which implies
that the association is characterized in terms of a single
parameter (φ) which determines a uniform value for all local
odds ratios equal to eφ. For nominal response categories,
I − 2 non-redundant scores are treated as parameters and are
estimated, but this still gives a substantial reduction over the
(I − 1)2 unrestricted local odds ratios. The parametric scores
need not be monotone, providing the flexibility required to
handle nominal responses.

An attractive feature of the association models is their
ability to capture underlying correlation patterns of many
discretized continuous variables in two-way contingency ta-
bles. For example, Goodman (1979), Becker (1989), and Wang
(1987) showed that the correlation parameter of a bivari-
ate normal distribution can be approximated closely using
a scaling of the intrinsic parameter φ. Anderson and Vermunt
(2000) provided latent continuous variable interpretations for
the RC model, with more than two correlated latent variables
for both ordered and nominal response categories. Moreover,
association models can approximate strong correlation pat-
terns between correlated multinomial responses regardless of
the response scale, which makes them appealing for use in the
GEE approach.

This article is structured as follows. In Section 2 we intro-
duce the notation and the basic features of the GEE method
for correlated multinomial responses, assuming the data arise
from a longitudinal study with possibly missing observations.
Further, we show that modeling the association structure be-
tween correlated multinomial responses via the local odds ra-
tios is more flexible than existing parameterizations (with re-
lated material at the journal website). In Section 3, we give
details of the proposed GEE approach, focusing on the es-
timation procedure for α and potential marginalized local
odds ratios structures. Section 4 summarizes a simulation
study that investigates the performance of the proposed ap-
proach. To illustrate our approach, we analyze a rheumatoid

arthritis clinical trial in Section 5. Conclusions and proposals
for future research are summarized in Section 6.

2. Notation and Basic Structure of GEE
Approach

Let Yit ∈ {1, 2, . . . , I > 2} be the multinomial response for sub-
ject i (i = 1, . . . , N) at time t (t = 1, . . . , Ti), and suppose
that data are missing completely at random (MCAR) as de-
fined in Rubin (1976). Define Yitj = I(Yit = j) for j = 1, . . . , I,
where I(A) denotes the indicator function of the event A.
We convert Yit into the equivalent (I − 1)-variate vector
Yit = (Yit1, . . . , Yit(I−1))

′ with the response category I omitted

since
∑I

j=1
Yitj = 1, and let Yi = (Y′

i1, . . . ,Y
′
iTi

)′. We let xi =
(x′

i1, . . . ,x
′
iTi

)′ denote the Ti(I − 1) × p matrix of explanatory
variable values for subject i, with the (I − 1) × p matrix xit for
time t including intercepts, time-stationary, time-varying, and
category-specific covariates. Let πitj = E(Yitj|xi) = Pr(Yitj =
1|xi), and let πit = (πit1, . . . , πit(I−1))

′ and πi = E(Yi|xi) =
(π′

i1, . . . , π
′
iTi

)′.
Denote by g : (0, 1)I−1 → �I−1 an (I − 1)-variate vector of

link functions and suppose that a multinomial generalized lin-
ear model (Fahrmeir and Tutz, 2001) is used to model the
marginal expected vector for subject i at time t

g[E(Yit |xi)] = g(πit) = xitβ, (2)

where β is the p-variate regression vector of interest. The
choice of the link vector g should reflect the response scale.
Options include the family of cumulative link models or
the adjacent-categories logit model for ordinal response cate-
gories, and the baseline-category logit model for nominal re-
sponse categories.

2.1. Overview of the GEE Approach

The GEE estimator β̂G is the solution of the estimating equa-
tions

U(β, α) = 1

N

N∑
i=1

DiV
−1
i (Yi − πi) = 0

where Di = ∂πi/∂β and where Vi = Vi(β, α) is a Ti(I − 1) ×
Ti(I − 1) “weight” matrix that is usually regarded as a “work-
ing” covariance matrix. For unknown α, Liang and Zeger
(1986) defined β̂G as the solution of U(β, α̂) = 0, where α̂ is a√

N-consistent estimator of α given β. Under mild regularity
conditions and correct specification of the marginal model in
(2), Liang and Zeger (1986) proved that β̂G is consistent and√

N(β̂G − β) converges in distribution to a p-variate normal
distribution with mean 0 and covariance matrix

�G = lim
N→∞

N�−1
0 �1�

−1
0 (3)

where �0 = ∑
i
D′

iV
−1
i Di, �1 = ∑

i
D′

iV
−1
i cov(Yi)V

−1
i Di,

and cov(Yi) = cov(Yi|xi) is the Ti(I − 1) × Ti(I − 1) true co-
variance matrix for subject i. The elements of cov(Yi) are

cov(Yitj, Yit′j′ |xi) =

⎧⎪⎨
⎪⎩

πitj(1 − πitj) if t = t′ and j = j′

−πitjπitj′ if t = t′ and j 	= j′

πitjt′j′ − πitjπit′j′ if otherwise
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where πitjt′j′ = E(YitjYit′j′ |xi) = Pr(Yitj = Yit′j′ = 1|xi)=Pr(Yit=
j, Yit′ = j′|xi) > 0. The “robust” covariance matrix �G can
be consistently estimated by ignoring the limit and replac-
ing (β, α) with (β̂G, α̂) and cov(Yi) with (Yi − π̂i)(Yi − π̂i)

′.

2.2. Association Structures for Multinomial Responses
and their Limitations

To solve U(β, α) = 0, the parameter vector α must be defined,
ideally in a way that it defines Vi as a “working” covariance
matrix. If the “working” assumption for Vi is close to the
true covariance matrix, efficiency gains in estimating β̂G are
likely to occur. The bivariate distribution for (Yit, Yit′) can be
depicted in an I × I table of cell probabilities that satisfy the
Fréchet bounds (Fréchet, 1940)

max{0, πitj + πit′j′ − 1} < πitjt′j′ < min{πitj, πit′j′ } (4)

and they are consistent with the marginal model in (2)

I∑
j=1

πitjt′j′ = πit′j′ and

I∑
j′=1

πitjt′j′ = πitj (5)

for j, j′ = 1, . . . , I. It follows that α is a “working” association
vector if Vi preserves the structure of cov(Yi) and if there
exists a distribution for Yi subject to the marginal model
specification and to the “working” assumption made for the
distributions of (Yit, Yit′) for all i and t < t′. The necessary
conditions (4) and (5) have not been stated in the GEE liter-
ature, but they are important if α is defined and interpreted
as a “working” association vector. For a given (β̂G, α̂), vio-
lation of (4) questions the required correct specification of
the marginal model while violation of (5) suggests that the
“working” distribution for (Yit, Yit′) is ill-defined.

For the possible parameterization of α for bivariate multi-
nomial responses in GEE methods, we next compare the feasi-
ble values for the correlation (Lipsitz et al., 1994; Miller et al.,
1993; Parsons et al., 2006), the global odds ratio (Williamson
et al., 1995; Heagerty and Zeger, 1996; Lumley, 1996) and
the local odds ratio. Technical details for our comparison can
be found in the Web Appendix A. The local odds ratios pa-
rameterization has two important advantages over the com-
peting ones. Unlike a uniform global odds ratios structure,
the local odds ratios parameterization is applicable to both
ordinal and nominal response scale. Unlike the correlation
parameterization or an unstructured global odds ratios pa-
rameterization, the local odds ratios parameterization is not
restricted by the marginal model specification for Ti = 2, and
hence it permits parsimonious, flexible, and efficient “work-
ing” forms for α that may depend on the category cutpoints
and/or the covariates. Given the marginal probabilities and
the local odds ratios, the probability distribution can easily
be obtained using the iterative proportional fitting (IPF) pro-
cedure proposed by Deming and Stephan (1940). For Ti ≥ 3,
the Web Appendix explain why the set of admissible values
for α̂ depends on the unknown marginal regression vector β

for all parameterizations of α considered herein and the pos-
sible implications regarding the asymptotic properties of the
GEE estimator of β. From a practical point of view, the above
suggest that a local odds ratios parameterization of α is less

restrictive than the other two parameterizations and it ensures
valid “working” marginal pairwise distributions of (Yit, Yit′) for
all t < t′, with respect to the marginal model specification in
(5).

3. A Local Odds Ratios GEE Approach

To circumvent theoretical problems, we propose the follow-
ing two-stage GEE approach. In the first stage we define
and estimate α by maximizing a pseudo likelihood func-
tion. Let L = T (T − 1)/2 be the number of time pairs, where
T = max{T1, . . . , TN}. At each time pair, we aggregate the
available response variables across subjects with no covariates
adjustment to form L sets of I × I marginalized contingency
tables. Set

α = (
θ1121, . . . , θ112(I−1), . . . , θ(T−1)1T1, . . . , θ(T−1)(I−1)T (I−1)

)′

where θtjt′j′ is the local odds ratio at the cutpoint (j, j′) at the
marginalized contingency table corresponding to the time pair
(t, t′) for t < t′. Now, α describes the marginalized local odds
ratios structure. We treat the L time pairs as levels of a group
variable and fit a generalized version of the RC model (Becker
and Clogg, 1989) simultaneously to the L marginalized con-
tingency tables. The local odds ratios under the generalized
RC model satisfy

log θtjt′j′ = φtt′(μ
tt′
tj − μtt′

t(j+1))(μ
tt′
t′j′ − μtt′

t′(j′+1)). (6)

For an ordinal response scale, as a default choice we recom-
mend assigning fixed unit-spaced values to the score param-
eters (e.g., μtt′

tj = μtt′
t′j = j for all t < t′ and j), in which case

the model reduces to the heterogeneous linear-by-linear as-
sociation model (Agresti, 2013); further simplicity can be ob-
tained by taking φtt′ = φ for each pair. For a nominal response
scale, the score parameters must be estimated and additional
constraints are needed. For simplicity, as a default choice
we recommend using homogeneous score parameters across
the cross-classification variables (μtt′

tj = μj) and employing the
constraints

I∑
j=1

μj = 0 and

I∑
j=1

μ2
j = 1.

Since the log local odds ratios in (6) do not depend on the
marginal model specification in (2), α and β are variation
independent.

To estimate α, we treat the L marginalized contingency
tables as independent. Since we are merely interested in esti-
mating the marginalized local odds ratios and not their stan-
dard errors, treating the tables as independent even though
they are clearly not so facilitates the estimating procedure
without affecting the consistency of the estimates. We utilize
maximum likelihood methods, assuming independent Poisson
sampling for the observed counts. If zero observed counts oc-
cur in such a pattern to cause non-existence of estimates, then
one can add a very small positive constant to each cell of
the L marginalized contingency tables. The maximization of
the Poisson likelihood function ensures the existence of α̂ and
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standard asymptotic arguments combined with the continuity
mapping theorem imply the

√
N-consistency of α̂ to α.

At the second stage, we solve the estimating equations
U(β, α̂) = 0 to estimate β. Since α and β are variation inde-
pendent and α̂ is a

√
N-consistent estimator of α, the estimate

of β maintains the asymptotic properties presented in Section
2. The IPF procedure makes feasible the calculation of Vi us-
ing {̂θtjt′j′ : t < t′ and j, j′ = 1, . . . , I − 1} as the common local
odds ratios structure across subjects.

This approach allows us to borrow “strength from the
strata” and estimate the dependency between the marginal-
ized responses at each time point. If a similar underlying cor-
relation pattern holds at a subject level, then Vi ≈ cov(Yi)

for all i and the efficiency of the GEE estimator β̂G should
increase. Despite this, we emphasize that α is a “nuisance”
vector which enables the “weight” matrix Vi to preserve the
structure of a potential “working” covariance matrix.

3.1. Local Odds Ratio Structures

Since the L marginalized tables are square, it would usually
be sensible to increase parsimony by using homogeneous score
parameters for the response categories at each time pair. Fur-
ther simplifications can be specified in terms of the log θtjt′j′

used to specify the association model:

(i) The uniform structure, log θtjt′j′ = φ, can be obtained
by fitting the homogeneous linear-by-linear association
model (Agresti, 2013). This structure assumes exchan-
geability of time pairs and of adjacent-category pairs.

(ii) The category exchangeability structure, log θtjt′j′ = φtt′ ,
can be obtained by fitting the heterogeneous linear-
by-linear association model. This structure assumes a
common local odds ratio at each time pair, but permits
different pairs to have differing associations.

(iii) The time exchangeability structure, log θtjt′j′ = φ(μj −
μj+1)(μj′ − μj′+1), is obtained by setting φtt′ = φ and
μtt′

tj = μtt′
t′j = μj for all j and t < t′ but treats the cate-

gory scores as unknown parameters rather than fixed,
equally spaced values. This structure does not assume
any time dependency and it implies equal local odds
ratios at the category cutpoints (j, j′) and (j′, j) when
j 	= j′.

(iv) The RC structure, log θtjt′j′ = φtt′(μ
tt′
j − μtt′

j+1)(μ
tt′
j′ −

μtt′
j′+1), is an extension of the previous structure that

additionally allows a time dependency. It is the special
case of (6) in which the score parameters are the same
for rows and columns for any given pair (t, t′). Having
many more parameters than the other structures, we
suggest using it only when the true association struc-
ture seems to be extremely complicated.

The time exchangeability and the RC structures are applica-
ble to nominal and ordinal response scales, but the uniform
and the category exchangeability structures are meaningful
only for ordinal response categories.

The simulation findings in Section 4 suggest that parsi-
monious local odds ratios structures should be used when
a nearly exchangeable underlying correlation pattern holds.
Therefore we recommend the following guidelines: For ordinal

response categories, apply the heterogeneity model to check
the range of the estimated intrinsic parameters. If their range
is small, say less than about two units, then regard the asso-
ciation pattern as nearly exchangeable and adopt the uniform
structure. Likewise, for nominal response categories, a com-
parison of the L estimated intrinsic parameters is helpful to
select between the time exchangeability and the more general
RC structure. However, we recommend using the time ex-
changeable structure with small sample sizes, because conver-
gence problems in the simulations did not allow us to explore
confidently the performance of the more general RC structure.

3.2. Software Implementation of GEE Local Odds Ratio
Approach

An R language software package multgee has been developed
to implement the proposed GEE approach. It includes two
routines for fitting the marginal models discussed in Section
2. The routine ordLORgee is designed for ordinal response
categories with category excheangeability as the default lo-
cal odds ratio structure, while the routine nomLORgee is for
nominal response categories using the time exchangeability
structure as default. More details about the package multgee
can be found in Touloumis (2012).

4. Simulation Study

We conducted a simulation study to investigate the behavior
of the proposed GEE approach under misspecification of the
association structure. The marginal probabilities were speci-
fied by the cumulative probit model

�−1 [Pr(Yit ≤ j|xi)] = β0j + βxit (7)

for i = 1, . . . , N, t = 1, . . . , 4, j = 1, . . . , 4, where � is the cu-
mulative distribution function of the standard normal dis-
tribution, xi = (xi1, xi2, xi3, xi4)

′, β = (β01, β02, β03, β04, β)′ =
(−1.5, −0.5, 0.5, 1.5, 1)′ and N = 100, 500. As in Wang and
Carey (2003), a variety of distributional scenarios were used
for the covariates:

Scenario 1: A time-stationary design with xit = xi

i.i.d.∼
N(0, 1) for all t.

Scenario 2: A time-varying design, in which xi are i.i.d.
from a tetra-variate normal distribution with
mean vector 0, unit variances and a 4 × 4 corre-
lation matrix with off-diagonal elements equal
to 0.8.

Scenario 3: Scenario 1 with a monotone missing pattern,
in which each subject had probability 0.25 of
dropping out permanently after the first occa-
sion.

Scenario 4: Scenario 2 with the missingness mechanism de-
scribed in Scenario 3.

Conditional on xi and β, Yit were determined by

Yit = j ⇔ β0(j−1) < εit − βxit ≤ β0j (8)

for j = 1, . . . , 5, β00 = −∞, β05 = ∞ and i.i.d. latent vectors
εi = (εi1, εi2, εi3, εi4)

′ from a tetra-variate normal distribution
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with mean vector 0, unit variances, and correlation matrix
Rε. For the latent correlation matrix Rε we considered ex-
changeable correlation forms, in which the off-diagonal ele-
ments were equal to ρ with ρ = 0, 0.15, 0.50 and 0.85, and
also the correlation matrix

R =

⎡
⎢⎢⎣

1.00 0.85 0.50 0.15

0.85 1.00 0.85 0.50

0.50 0.85 1.00 0.85

0.15 0.50 0.85 1.00

⎤
⎥⎥⎦.

We focused on the performance of the GEE estimators of
β under the independence (β̂I), the uniform (β̂U), the cat-
egory exchangeability (β̂CE), the time exchangeability (β̂TE)
and the RC (β̂RC) structure. We originally planned to com-
pare our GEE approach with existing ones, specifically the
approach of Lipsitz et al. (1994) and that of Heagerty and
Zeger (1996), as implemented by the routine ordgee in the R
package geepack (Højsgaard, Halekoh, and Yan, 2006). Un-
fortunately, low convergence rates in every sampling scheme
(≤38% for the GEE approach of Lipsitz et al. (1994) and
≤60% for that of Heagerty and Zeger (1996)) did not per-
mit a fair comparison with the proposed GEE approach. So,
we focused only on comparing the various association model
structures in our formulation, especially relative to the inde-
pendence structure that is commonly used in practice (e.g.,
it is the only option with the SAS PROC GENMOD routine
for multinomial GEE).

In each of the 40 sampling schemes we drew 10, 000 repli-
cations. For every estimating procedure in a sampling scheme
we calculated the simulated bias and standard error of the
GEE estimator of β, the percentage of times that the 95%
Wald confidence interval for β using the estimated “robust”
covariance matrix in (3) contained the true parameter value
and the simulated relative efficiency (SRE) criterion treating
β̂I as a baseline estimator. The SRE criterion was defined
as the ratio of the simulated mean squared errors of β̂I to
β̂ measured over replications in which both estimators were
obtained. Simulation results in sampling schemes associated
with a latent exchangeable correlation pattern are available
on Web Tables 1–4 and with the latent correlation matrix R
in Table 1.

For our proposed GEE approach, we noticed that simple
“working” local odds ratios structures exhibited fewer con-
vergence problems, similar to those reported in Miller et al.
(1993) for multinomial responses or in Lipsitz, Laird, and
Harrington (1991) for binary responses, and clearly less than
those of alternative multinomial GEE approaches. Conver-
gence problems were encountered for the RC structure when
N = 100, because the estimated local odds ratios were often
close to the boundary values due to sparse marginalized con-
tingency tables. For this reason, the performance of β̂RC was
evaluated only when N = 500, and we recommend use of this
general structure only for large sample sizes.

For a particular latent correlation pattern, similar trends
occurred for the SRE criterion of each estimator. In par-
ticular, SRE increased in time-varying designs compared to
time-stationary designs, and it changed little as N increased.
The results suggest that the proposed GEE method tends to

be strikingly more efficient than the independence “working”
model in designs with time-varying covariates, regardless of
whether data are missing. Under a latent exchangeable corre-
lation pattern, all the proposed GEE estimators were nearly
equally efficient. Conditional on the covariates configuration,
the Web Tables show that their efficiency appeared to be a
strongly increasing function of ρ. The estimator β̂I was ad-
equate in Scenario 1 or if ρ = 0.15. However, the proposed
GEE estimators offered substantial efficiency gains as ρ in-
creased, for example up to 60% for ρ = 0.85. Under the latent
correlation matrix R (for which results are summarized in
Table 1), the choice of the “working” local odds ratios struc-
ture mattered. Comparing values for the SRE criterion, we
see that the estimators β̂CE and β̂RC based on more complex
local odds ratios structures performed slightly better than β̂U

and β̂TE, perhaps because the category exchangeability and
the RC structure allow the local odds ratios to vary across
time pairs and better approximate complicated association
patterns such as the one implied by R.

5. Data Analysis: Rheumatoid Arthritis Data

A randomized clinical trial (Lipsitz et al., 1994) was designed
to evaluate the effectiveness of the drug auranofin versus the
placebo therapy for the treatment of rheumatoid arthritis.
The repeated response variable was the self-assessment of
the rheumatoid arthritis classified on a five-level ordinal scale
(1 = poor, . . . , 5 = very good) and measured at three follow-
up times (t), coded as (1) at one, (2) at three and (3) at 5
months. Dropout or intermittent missing responses occurred
for 12 out of the 301 subjects, but Lipsitz et al. (1994) argued
that MCAR was a plausible assumption for the missingness
mechanism.

First we consider the association structure. The full
marginalized contingency table had 11 out of 75 cells empty.
An examination of the 5 × 5 marginalized contingency tables
at each time pair indicates strong pairwise association, since
the majority of observed frequencies fall on the diagonal, sub-
diagonal, and superdiagonal, with less than 11% falling in the
remaining cells. The estimated intrinsic parameters using the
heterogeneous linear-by-linear association model do not differ
much, varying from 0.65 to 0.91, and thus the uniform local
odds ratio structure seems a reasonable approximation for the
association pattern. The local odds ratio estimate is 2.26 after
fitting the homogeneous linear-by-linear association model.

Let γitj denote the cumulative probability of response level
j (j = 1, 2, 3, 4) at time t (t = 1, 2, 3) for subject i (i =
1, . . . , 301), and let bi and trti denote the subject-specific
baseline self-assessment of rheumatoid arthritis and the bi-
nary treatment indicator for receiving the drug auranofin. To
model the marginal probabilities, we used the cumulative logit
marginal model

logit(γitj) = β0j + β1I(t = 2) + β2I(t = 3) + β3trti + β4I(bi = 2)

+ β5I(bi = 3) + β6I(bi = 4) + β7I(bi = 5). (9)

Table 2 contains the GEE estimates and the “robust”
standard error estimates of the marginal regression vector β

in (9) under the independence “working” model and under
the uniform and the category exchangeability structures.



638 Biometrics, September 2013

Table 1
Simulation results for the GEE estimators of β = 1 in Pr(Yit ≤ j|xi) = �(β0j + βxit) under the latent correlation matrix R as

defined in Section 4.

N = 100 N = 500

Estimator Bias SE SRE EL CR Bias SE SRE EL CR

Scenario 1

β̂I 0.0145 0.1087 1.00 93.95 100.00 0.0029 0.0472 1.00 95.09 100.00

β̂U 0.0140 0.1088 0.98 93.87 97.78 0.0027 0.0479 0.97 94.78 97.82

β̂CE 0.0092 0.1022 1.12 94.00 97.42 0.0018 0.0448 1.11 94.95 97.65

β̂TE 0.0044 0.1086 1.00 93.89 98.09 0.0010 0.0476 0.98 94.80 97.90

β̂RC −0.0014 0.0447 1.12 94.93 97.20

Scenario 2

β̂I 0.0153 0.1019 1.00 94.28 100.00 0.0033 0.0451 1.00 94.86 100.00

β̂U 0.0107 0.0891 1.30 94.48 98.54 0.0026 0.0397 1.28 95.28 98.88

β̂CE 0.0024 0.0813 1.59 93.92 98.91 0.0009 0.0359 1.58 95.32 98.84

β̂TE 0.0036 0.0895 1.31 94.22 98.58 0.0012 0.0397 1.29 95.15 98.71

β̂RC −0.0045 0.0359 1.56 94.69 98.69

Scenario 3

β̂I 0.0196 0.1270 1.00 93.89 100.00 0.0044 0.0551 1.00 94.92 100.00

β̂U 0.0171 0.1224 1.06 94.25 98.46 0.0037 0.0536 1.06 94.80 98.89

β̂CE 0.0104 0.1198 1.12 94.04 89.06 0.0024 0.0520 1.13 94.96 98.80

β̂TE 0.0082 0.1221 1.08 94.20 97.79 0.0020 0.0535 1.06 94.77 98.80

β̂RC −0.0023 0.0522 1.11 94.72 94.45

Scenario 4

β̂I 0.0183 0.1202 1.00 93.93 100.00 0.0038 0.0531 1.00 94.90 100.00

β̂U 0.0122 0.1058 1.28 94.29 98.82 0.0027 0.0472 1.26 94.60 99.27

β̂CE -0.0035 0.1012 1.41 92.98 98.40 0.0002 0.0445 1.42 94.44 99.15

β̂TE 0.0031 0.1062 1.29 93.67 98.97 0.0010 0.0472 1.27 94.43 99.37

β̂RC −0.0082 0.0447 1.36 93.16 98.80

The columns display the simulated bias (Bias), the simulated standard errors (SE), the simulated relative efficiency (SRE), the empirical
level of the 95% Wald confidence intervals for β based on the robust covariance matrix (EL), and the convergence rate (CR) for each
estimating procedure.

As expected with time-stationary covariate designs under a
nearly exchangeable latent correlation pattern, the uniform
and the category exchangeability structure provided similar
GEE estimates and standard error estimates, while based

on the estimated standard errors they offer some efficiency
gains relative to the independence “working” model. In every
estimating procedure, the effects of the 5 months follow-up
indicator, of the drug auranofin, and of the indicators of the

Table 2
Results for the proposed GEE method with a cumulative logit marginal model, using local odds ratios to characterize

association structure, for a rheumatoid arthritis clinical trial.

Local odds ratios structure

Independence Uniform Category Exchangeability

Parameter Estimate SE Estimate SE Estimate SE
β01 −1.8500 0.4068 −1.8432 0.3893 −1.8400 0.3874
β02 0.2308 0.3690 0.2669 0.3501 0.2771 0.3484
β03 2.1889 0.3857 2.2313 0.3663 2.2478 0.3651
β04 4.4899 0.4431 4.5254 0.4212 4.5482 0.4199
β1 −0.0127 0.1211 0.0014 0.1218 −0.0008 0.1218
β2 −0.3852 0.1160 −0.3617 0.1139 −0.3605 0.1141
β3 −0.5643 0.1679 −0.5121 0.1680 −0.5046 0.1673
β4 −0.6270 0.4027 −0.6696 0.3804 −0.7029 0.3786
β5 −1.1861 0.3754 −1.2607 0.3525 −1.2756 0.3507
β6 −2.5281 0.4375 −2.6437 0.4128 −2.6558 0.4104
β7 −3.9533 0.5351 −3.9661 0.5316 −3.9956 0.5325
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baseline response level 3 or higher are statistically significant
at α = 0.05. The indicator of the baseline response level 2
has p-value=0.08 under the uniform structure, 0.06 under
the category exchangeability structure, and only 0.12 under
the independence “working” structure.

We interpret the main effects estimates using the uniform
local odds ratio structure. Subjects at the 5 months follow-
up time have estimated odds of self-assessment of rheumatoid
arthritis in response level k or better that are 1.43 times the
corresponding odds at the 1-month follow-up. The drug au-
ranofin improved the self-assessment during the trial, as sub-
jects in the treatment group have estimated cumulative odds
1.67 times those of subjects in the placebo group. The magni-
tude of these estimates is similar to the ones in Lipsitz et al.
(1994), where a three-level ordinal response scale was used.
Finally, a one-level increase in the baseline response 1, 2, 3 and
4 increases the estimated cumulative odds multiplicatively by
1.95, 1.81, 3.99, and 3.75, respectively.

6. Summary and Discussion

We proposed a GEE approach based on a local odds ratios
parameterization that can handle both ordinal and nominal
correlated multinomial responses. Simulations show that this
approach is considerably more efficient than the independence
“working” model in time-varying covariate designs when the
multinomial responses are strongly correlated. The intrin-
sic parameters in the association models describe the overall
strength of pairwise associations, and we can use their es-
timates to evaluate whether the correlation pattern changes
dramatically across time. For ordinal responses, we recom-
mend using the uniform structure for nearly exchangeable cor-
relation patterns across times and the category exchangeabil-
ity structure for more complicated association patterns. For
nominal responses, we recommend using the time exchange-
ability structure, with the more general time-dependent RC
structure being possible with large samples when the simpler
structure seems inadequate. Note that the use of the proposed
GEE approach is not restricted to longitudinal studies but it
can be applied whenever a marginal model is sensible for cor-
related multinomial responses, such as for a wide variety of
forms of clustered data.

Although we developed the proposed GEE approach to ac-
count for multinomial responses, it can be applied with binary
responses. In this case, the proposed GEE approach does not
directly relate to ordinary GEE approaches that use an odds
ratio parameterization because it identifies α as a “nuisance”
vector and not as a “working” association vector. Hence, we
believe that even in the binary case our approach is more
robust to GEE pitfalls pointed out by Crowder (1995) and
Chaganty and Joe (2004, 2006) for such responses.

In future research, we hope to extend the proposed GEE
method to handle unsynchronized longitudinal studies in
which the data for each subject are collected at irregular
time points. One could also investigate the estimation pro-
cedure for α for sparse marginalized contingency tables, eval-
uate data-based strategies for selecting the working structure
for the local odds ratios, and consider alternative estimators
for the robust covariance matrix �G.

7. Supplementary Materials

Web Appendix A and Web Tables 1-4 referenced in Sec-
tions 2.2 and 4 are available with this article at the Biometrics
website on Wiley Online Library.
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