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Abstract

Kateri and Papaioannou [1997. Asymmetry models for contingency tables. J. Amer. Statist. Assoc. 92, 1124–1131]

proved that, under certain conditions, quasi-symmetry is the closest model to symmetry. A simpler ordinal quasi-symmetry

model is the closest to symmetry, under a weaker condition of unequal marginal mean scores. It is a special case of a class

of ordinal models based on f-divergence.
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1. Introduction

Consider a square contingency table with row and column classification variables X and Y. Such tables are
common with repeated measurement of a categorical variable, such as in panel studies and in the study of
social mobility. The quasi-symmetry (QS) model is a key model for such tables that often fits well and has
connections with other standard models for repeated categorical data, such as the Bradley–Terry model and
the Rasch model (cf. Agresti, 2002). Kateri and Papaioannou (1997) proved that, under certain conditions
pertaining to allowing marginal inhomogeneity, the QS model is the closest to complete symmetry in terms of
the Kullback–Leibler distance. They introduced a generalized QS model, that under the same conditions is the
closest model to complete symmetry in terms of the f-divergence (Csiszàr, 1963).

For ordinal classifications, Agresti (1983) introduced a special case of the QS model, which we refer to as the
ordinal quasi-symmetry (OQS) model. It has only one more parameter than the complete symmetry model and
simpler interpretation than the QS model. In this paper, we prove that OQS is the closest model to complete
symmetry under certain conditions pertaining to allowing unequal marginal mean scores. We also introduce a
generalized class of OQS models based on the f-divergence and discuss useful special cases (Section 2). Section 3
discusses the interpretation of these models. An alternative parameterization for the OQS model simplifies its
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interpretation and the estimation of the parameter pertaining to divergence from symmetry. The final section
uses a classic example to illustrate the ordinary OQS model and the OQS model that minimizes a Pearsonian
distance.

2. A generalized ordinal quasi-symmetry model

Let p ¼ ðpijÞ denote probabilities for a r� r contingency table, where pij is the probability that an
observation falls in its ði; jÞ cell. Agresti (1983) proposed the model

pij ¼ pjid
i�j ; iXj. (1)

Under this model, the log odds that an observation falls a certain distance above the main diagonal instead of the
same distance below it depends linearly on the distance. More generally, the distances in the above model can be
expressed in terms of a set of known scores u1pu2 . . .pur (with u1our) instead of the category indices. Such models
are special cases of Goodman’s (1979) diagonals-parameter symmetry models, which replace di�j in (1) by di�j.

Agresti (1983) showed that model (1) fits well when the two categorical variables are discretized variables
having an underlying bivariate normal distribution. Agresti (1993) showed that the maximum likelihood (ML)
estimate of logðdÞ for this model is identical to the conditional ML estimate of the item parameter for an
ordinal extension of a Rasch-type model using adjacent-category logits. Model (1) can be expressed in
loglinear form as

logðpijÞ ¼ lþ lX
i þ lX

j þ buj þ lXY
ij ; i; j ¼ 1; . . . ; r, (2)

with flXY
ij ¼ lXY

ji g. When the fuig scores are equally spaced, model (2) is equivalent to (1), with b ¼ � logðdÞ
when fui ¼ ig. Model (2) is the OQS model. The special case b ¼ 0 is the complete symmetry model, denoted S,
for which all pij ¼ pji.

Model (2) is the special case of the ordinary QS model in which the column main effect parameters satisfy
lY

j ¼ lX
j þ buj. Since the OQS model is invariant under linear transformations of the scores, without loss of

generality we takeX
i

ui ¼ 0 and
X

i

u2
i ¼ 1. (3)

These constraints are useful for the interpretation of b, as shown in the next section, while the first of them is
compatible with the sum-to-zero constraints often taken for the main effect parameters of the loglinear model.

Kateri and Papaioannou (1997) proved that, under the constraint that fpij þ pji; i4jg and fpi�g (and hence
fp�ig) are given, QS is the closest model to S in terms of the Kullback–Leibler distance. The sample values of
these measures are the sufficient statistics for the QS model. For the OQS model, the sufficient statistics are the
sample values of fpij þ pji; i4jg and the marginal mean

Pr
i¼1uipi� (or

Pr
i¼1uip�i). Analogous to the result in

Kateri and Papaioannou (1997), it follows from Theorem 2.1 below that the OQS model is the closest model to
S in terms of the Kullback–Leibler distance, given fpij þ pji; i4jg and

Pr
i¼1uipi� (and hence

Pr
i¼1uip�i).

Replacing the Kullback–Leibler distance by the more general f-divergence, we next introduce a class of
generalized OQS models. If p ¼ ðpijÞ and q ¼ ðqijÞ are two discrete finite bivariate probability distributions,
then the f-divergence between p and q is defined by

ICðp : qÞ ¼
X

i;j

qijf
pij

qij

 !
,

where f is a real-valued convex function on ½0;þ1Þ with f ð1Þ ¼ 0, f ðxÞ ! 0 as x! 0, 0f ð0=0Þ ¼ 0 and
0f ðx=0Þ ¼ xf1 with f1 ¼ limx!1½f ðxÞ=x�.

Theorem 2.1. Let f be a twice differentiable and strictly convex function, and let F ðxÞ ¼ f 0ðxÞ for all x. For

probabilities p for a r� r contingency table, let fpS
ij ¼ ðpij þ pjiÞ=2g be related values satisfying symmetry. Then,

in the class of models with given sums fpij þ pjig and given marginal mean
Pr

i¼1uipi� (or
Pr

i¼1uip�i), the model

pij ¼ pS
ij F
�1ðaui þ gijÞ; i; j ¼ 1; . . . ; r, (4)

with gij ¼ gji, is the closest to model S in terms of the f-divergence.
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Appendix A gives a proof. We denote model (4) as OQS[f ]. Its residual degrees of freedom (df) for testing
lack of fit equal rðr� 1Þ=2� 1. This is just one less than df for the S model, which is the special case of OQS[f ]
with a ¼ 0. Model OQS[f ] is itself a special case of the QS[f ] model of Kateri and Papaioannou (1997), which
replaces aui in (4) with ai, i ¼ 1; . . . ; r. For the probabilities in (4) to be positive, we need F�1ðaui þ gijÞ40 for
all i; j. Depending on the form of f, this can require a constraint on a.

From (4) and the constraints pS
ij ¼ pS

ji and gij ¼ gji,

pij þ pji ¼ pS
ij ½F
�1ðaui þ gijÞ þ F�1ðauj þ gijÞ�.

Thus,

F�1ðaui þ gijÞ þ F�1ðauj þ gijÞ ¼ 2; i; j ¼ 1; . . . ; r, (5)

so gij in model (4) is redundant, given a. This reflects OQS[f ] having only a single extra parameter compared to
S (namely, a) and one less residual df. The form of OQS[f ] shows it provides a divergence from model S. The
next section explains the role of the u-scores and a in describing this divergence.

We next consider some particular members of the OQS[f] class (4):

1. For f ðxÞ ¼ x logðxÞ, x40, the f-divergence IC is the Kullback–Leibler distance. Then, F�1ðyÞ ¼ ey�1, and
model (4) becomes

pij ¼ pS
ij

2eaui

eaui þ eauj
; i; j ¼ 1; . . . ; r. (6)

This is an equivalent expression for the OQS model (2), with a ¼ �b. Expression (6) reveals the ‘‘divergence
from symmetry’’ nature of the OQS model in terms of a.

2. For f ðxÞ ¼ ð1� xÞ2, the f-divergence IC is the Pearsonian distance. Model (4) then simplifies to

pij ¼ pS
ij ð1þ aðui � ujÞÞ; i; j ¼ 1; . . . ; r, (7)

with a ¼ a=4, where the positivity of fpijg requires jajoður � u1Þ
�1. We refer to this model as the Pearsonian

OQS model.
3. When IC is the Cressie–Read power divergence (Read and Cressie, 1988), f depends on a real-valued

parameter l and equals f lðxÞ ¼ ð1=lðlþ 1ÞÞðxlþ1 � xÞ, x40. Model (4) then becomes

pij ¼ pS
ij f1þ lðaui þ gijÞg

1=l; i; j ¼ 1; . . . ; r. (8)

When l ¼ 0 or �1, f 0ðxÞ ¼ liml!0½f lðxÞ� and f �1ðxÞ ¼ liml!�1½f lðxÞ�. Model (8) reduces to model (6) when
l ¼ 0 and to (7) when l ¼ 1. We denote models (8), (6) and (7) as OQSl, OQS0, and OQS1.

Analogous results occur in the literature for association models and correlation models (Goodman, 1985),
in terms of distance from the independence model. Gilula et al. (1988) showed that association models are
closest to independence in terms of the Kullback–Leibler distance, while correlation models are closest in
terms of Pearsonian distance. In comparing association and correlation models, Goodman (1985, p. 32)
pointed out that the parametric scores in correlation models must satisfy certain constraints to ensure the
positivity of the cell probabilities, but this was not true for the corresponding scores in association models.
Analogously, in our context, OQS1 requires a constraint, whereas OQS0 does not.

3. Parameter interpretation and a basic property

The parameter a in the OQS[f ] model (4) has straightforward interpretations in terms of departures from
complete symmetry, which is the special case a ¼ 0. For u-scores satisfying (3),

a ¼
1

r

X
i;j

ui F
pij

pS
ij

 !
� F

pji

pS
ij

 ! !
. (9)
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For the standard OQS0 model, (9) becomes

a ¼
1

r

X
i;j

ui log
pij

pji

� �

while for OQS1 it reduces to

a ¼
1

r

X
i;j

ui

ðpij � pjiÞ

2pS
ij

.

These relations and the model expressions for QS[f ] and its special cases show that a40 indicates that the
lower triangle of the table is more probable than the upper. This inequality depends linearly on the known
scores in the F-scale, since

F
pij

pS
ij

 !
� F

pji

pS
ij

 !
¼ aðui � ujÞ.

The magnitude of the difference is determined by the absolute value of a. For the OQS0 model, the F-scale is
the log-scale and this relation becomes pij=pji ¼ eaðui�ujÞ. For the OQS1 model, it is

pij

pji

¼
1þ aðui � ujÞ

1� aðui � ujÞ
.

A standard property of the QS and OQS models relating complete symmetry and marginal homogeneity
applies also for the OQS[f ] model, namely

Complete symmetry ¼Marginal homogeneityþOQS½f �.

Complete symmetry is the special case of OQS[f ] in which a ¼ 0, so one can test marginal homogeneity (with
df ¼ 1) by comparing the fits of the S and OQS[f ] models. Departures from S expressed by a also describe
marginal inhomogeneity.

4. Example

Goodman (1979), Agresti (1983), and Kateri and Papaioannou (1997) analyzed Table 1, which has become
a classic data set for illustrating methods for square ordinal tables. The table cross classifies 7477 women
according to the unaided distance vision level of their right and left eyes. Agresti (1983) applied the ordinary
OQS model. We shall additionally apply the OQS1 model and compare results.

ARTICLE IN PRESS

Table 1

Cross classification of 7477 women by unaided distance vision of right and left eyes

Left eye grade

Right eye grade Best Second Third Worst

Best 1520 266 124 66

– (263.37a/263.35b) (133.35/133.37) (59.12/59.17)

Second 234 1512 432 78

(236.63/236.65) – (418.23/418.20) (88.53/88.54)

Third 117 362 1772 205

(107.65/107.63) (375.77/375.80) – (202.27/202.25)

Worst 36 82 179 492

(42.88/42.83) (71.47/71.46) (181.73/181.74) –

Parenthesized values are ML estimates of the expected frequencies under the models OQS0 and OQS1.
aOQS0.
bOQS1.

M. Kateri, A. Agresti / Statistics & Probability Letters 77 (2007) 598–603 601
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The likelihood equations for estimating parameters for these two models are relatively simple. Let pij denote
the sample proportion for cell (i; j). For either model, p̂S

ij ¼ ðpij þ pjiÞ=2, and so we need only consider a.
For the OQS1 model, the likelihood equation isX

i;j

pij

p̂ij

p̂S
ij ðui � ujÞ ¼ 0.

For the OQS0 model, the likelihood equation is

X
i;j

ðpij � p̂ijÞ
p̂ji

p̂S
ij

ðui � ujÞ ¼ 0.

With equidistant scores for successive categories that satisfy (3), the likelihood-ratio statistic for testing the
goodness of fit of model OQS0 applied to Table 1 equals G2

0 ¼ 7:280 with df ¼ 5, while â ¼ �0:239
(s.e. ¼ 0.069), which equals �b̂ in expression (2). (Agresti (1983) reported a different value, b̂ ¼ 0:054, because
he used a different set of equidistant u-scores, but the fits are identical.) For the OQS1 model, G2

1 ¼ 7:271, and
â ¼ �0:119 (s.e. ¼ 0.034). The ML fits of both these models are shown in parentheses in Table 1. In practical
terms, the fits are nearly equivalent, differing only in the second decimal place. The P-values for the G2

goodness-of-fit statistics are both 0.201 to three decimal places.
The negative sign of â (or â) indicates that the lower triangle of Table 1 is less probable than the upper.

That is, the grade distribution is lower for the left eye. According to the OQS models’ structure, the odds
of an observation falling a certain distance under the main diagonal of the table (instead of the same distance
above it) are estimated as p̂ij=p̂ji ¼ e�0:239ðui�ujÞ for the OQS0 model and p̂ij=p̂ji ¼ ð1� 0:119ðui � ujÞÞð1þ 0:119
ðui � ujÞÞ

�1 for the OQS1 model, i4j.
The OQS0 and OQS1 models do not always exhibit such similarity. In practice, often they do not when â in

model OQS1 takes value at the boundary in order for probability estimates to fall between 0 and 1 (that is,
jâj ¼ ður � u1Þ

�1). Such a case is Table 10.5 in Agresti (2002, p. 421), for which G2
0 ¼ 2:1 and G2

1 ¼ 74:7, with
df ¼ 5. Fitting these models to various data sets, we have observed that boundary solutions for model OQS1
often, but not always, occurred if p1r ¼ 0 or pr1 ¼ 0. We also observed that OQS1 need not provide a poorer fit
than OQS0, and their G2 values can also differ substantially even in non-boundary cases.

Appendix A. Proof of Theorem 2.1

This is a constraint minimization problem, solved by the method of Lagrange multipliers. The function to
be minimized is ICðp : pSÞ, subject to the constraints pij þ pji ¼ 2pS

ij (i; j ¼ 1; . . . ; r) and
Pr

i¼1uipi� ¼ v, for some
constant v. The Lagrange function is

LðfpijgÞ ¼ ICðp : pSÞ þ b
Xr

i¼1

uipi� � v

 !
þ
X

i;j

cijðpij þ pji � 2pS
ij Þ,

where b and fcijg are the Lagrange multipliers. Setting qL=qpij ¼ 0, we obtain

f 0
pij

pS
ij

 !
þ bui þ cij þ cji ¼ 0.

With a ¼ �b and gij ¼ �ðcij þ cjiÞ, for which gij ¼ gji, and using F ¼ f 0, we obtain

F
pij

pS
ij

 !
¼ aui þ gij. (10)

To solve (10) with respect to pij, the existence of F�1 is required. This is ensured by the strict monotonicity of
F, because F 0ðxÞ ¼ f 00ðxÞ40 for all x, since f is strictly convex. Thus, (10) leads to (4). Finally, L has a
minimum at the solution, since the Hessian matrix is positive definite (f 0040).
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