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SUMMARY

We propose pseudo-score confidence intervals for parameters in models for discrete data. The confidence
interval is obtained by inverting a test that uses a Pearson chi-squared statistic to compare fitted values
for the working model with fitted values of the model when a parameter of interest takes various fixed
values. For multinomial models, the pseudo-score method simplifies to the score method when the model is
saturated and otherwise it is asymptotically equivalent to score and likelihood ratio test-based inferences.
For cases in which ordinary score methods are impractical, such as when the likelihood function is not
an explicit function of model parameters, the pseudo-score method is feasible. We illustrate the method
for four such examples. Generalizations of the method are also presented for future research, including
inference for complex sampling designs using a quasilikelihood Pearson statistic that compares fitted
values for two models relative to the variance of the observations under the simpler model.

Some key words: Categorical data; Complex sampling; Contingency table; Multinomial model; Pearson chi-squared
statistic; Quasilikelihood.

1. INTRODUCTION

For contingency tables, large-sample score-test-based inference performs well, often even for relatively
small samples. For goodness-of-fit tests of generalized linear models, the score test statistic is the Pearson
statistic comparing observed and fitted values (Smyth, 2003). For interval estimation of a parameter in a
multinomial model, we propose a pseudo-score method based on inverting a Pearson statistic that compares
the model-fitted values to the values fitted assuming a particular value of that parameter. The inferences
are asymptotically equivalent alternatives to actual score and likelihood ratio test-based inferences. When
score confidence intervals are difficult to construct, such as when the likelihood function is not an explicit
function of the model parameters, it is still possible to conduct pseudo-score inference.

After introducing the pseudo-score method and discussing the connection between ordinary score and
pseudo-score inferences, we illustrate pseudo-score confidence intervals for four models for which the
ordinary score method is difficult to implement. The emphasis of this article is on modelling categorical
response variables having a multinomial distribution. However, we also present a generalization of the
pseudo-score method for complex sampling designs and suggest future research on a quasilikelihood gener-
alization that uses an extended Pearson statistic comparing fitted values for two nested models relative to the
estimated covariance matrix of the observations under the simpler model. Such methods are useful in appli-
cations for which likelihood-based methods such as profile likelihood confidence intervals are not available.
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2. PSEUDO-SCORE INFERENCE USING THE PEARSON CHI-SQUARED STATISTIC

For a contingency table, let {ni } denote cell counts and let {μ̂i } denote maximum likelihood estimates
of expected cell counts for a particular model. We assume a multinomial distribution for {ni }. If one
variable is a response and the others are explanatory, we assume independent multinomial distributions at
all combinations of settings of the explanatory variables.

Let {μ̂i0} denote maximum likelihood fitted values assuming a simpler, null model. The likelihood ratio
statistic for testing the null hypothesis that the simpler model holds against the alternative hypothesis that
the full model holds equals G2 = 2

∑
i μ̂i log(μ̂i/μ̂i0). A corresponding Pearson form of statistic is

X2 =
∑

i

(μ̂i − μ̂i0)2

μ̂i0
.

When the full model is saturated, such as unspecified multinomial probabilities in a 2 × 2 table, X2 is
the Pearson statistic for testing the goodness-of-fit of the simpler model. By contrast, the use of X2 for
comparing two unsaturated models has received little attention. Rao (1961) proposed this version of X2 and
derived its asymptotic distribution. Haberman (1977) further developed theory and showed the asymptotic
null equivalence of G2 and X2 for large, sparse tables.

This article applies X2 to cases in which {μ̂i } refers to maximum likelihood fitted values for the
multinomial model and {μ̂i0} refers to maximum likelihood fitted values for a special case of this model in
which a particular scalar parameter β from the model takes a fixed value β0 in the interior of the parameter
space. That is, {μ̂i0} are found by fitting the model under the constraint that β = β0. Let χ2

ν,a denote the
(1 − a) quantile of the chi-squared distribution with ν degrees of freedom. The set of β0 values for which

X2(β0) =
∑

i

(μ̂i − μ̂i0)2

μ̂i0
� χ2

1,a

is an asymptotic 100(1 − a)% confidence interval for β. When the full model is saturated, X2(β0) is the
score statistic for testing H0: β = β0 (Cox & Hinkley, 1974, p. 326; Smyth, 2003). Inverting this test, for
the possible β0 values, yields the score confidence interval. For example, see Cornfield (1956) for the odds
ratio, Mee (1984) for the difference of proportions, Koopman (1984) for the relative risk and Lang (2008)
for generic measures of association.

When the full model is unsaturated, which is the situation of interest in this article, X2(β0) is not the
score statistic. We refer to the test using X2(β0) to compare models in that case as a pseudo-score test and
the confidence interval obtained by inverting this test as a pseudo-score confidence interval. In the case
of a generalized linear model with canonical link function, Lovison (2005) gave a formula for the score
statistic that resembles the Pearson statistic, being a quadratic form comparing fitted values for the two
models. Let X be the model matrix for the full model and let V̂0 be the diagonal matrix of estimated
variances of the observations under the null model, with fitted values μ̂ for the full model and μ̂0 for the
reduced model. Then, the score statistic can be expressed as (μ̂ − μ̂0)T X (X T V̂0 X )−1 X T (μ̂ − μ̂0). See
also Lang et al. (1999) for the loglinear case. For this canonical-link case, Lovison also showed that the
score statistic bounds below the X2(β0) statistic comparing the models.

Although X2(β0) as defined above refers to models applied to a contingency table, like the likelihood ratio
statistic G2, it often applies even with continuous explanatory variables or highly sparse contingency tables.
For the contingency table representation of the data, the difference between the numbers of parameters
in the two models must be fixed as n increases, and those parameters cannot fall on the boundary of
the parameter space. The asymptotic equivalence with G2 under these conditions follows from standard
results (Haberman, 1977) by which the Pearson statistic is a quadratic approximation for the likelihood
ratio statistic such that the difference between the statistics converges in probability to zero under the
simpler model and certain regularity conditions. In addition, when β is d-dimensional rather than scalar,
the method extends to a confidence region by referring X2(β0) to χ2

d,a .
We believe that pseudo-score methods are useful for three reasons: First, for models such as considered

in this article, which are not generalized linear models with canonical link, ordinary score methods are
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Table 1. Contingency table for illustrating pseudo-
score inferences for models for ordinal data

Health care

Environment 1 2 3 Total

1 21 13 12 46
2 10 10 11 31
3 9 7 29 45

Total 40 30 52 122

not practical but the pseudo-score methods can be implemented with the same level of difficulty as
profile likelihood confidence intervals. The next section shows examples of four such models. Second,
as §5 discusses, extensions apply to settings in which profile likelihood methods are not available. Third,
research has shown that ordinary score inferences, when available, perform well for a variety of measures
for discrete data, in terms of actual error probabilities being close to nominal levels. In fact, they often
perform better than likelihood ratio test-based inference and much better than Wald test-based inference
when sample sizes are not large. This may reflect the fact that for canonical models, the score statistic is
a standardization of a sufficient statistic that is a linear combination of the observations, and uses a null
rather than non-null standard error. For example, see Koehler & Larntz (1980) for testing independence
in two-way contingency tables, Newcombe (1998a) for confidence intervals for binomial proportions,
Newcombe (1998b) and Agresti & Min (2005) for confidence intervals for the difference of proportions
and relative risk and Miettinen & Nurminen (1985) and Agresti & Min (2005) for confidence intervals
for the odds ratio. Our simulations have suggested that similar good performance occurs for pseudo-score
confidence intervals.

3. EXAMPLES OF PSEUDO-SCORE CONFIDENCE INTERVALS

As mentioned above, for inference about a parameter in an unsaturated model, the score statistic is
not the Pearson statistic and it is often impractical to find it. Even for simple models, ordinary score
confidence intervals are not available with common statistical software. Using such software, it is possible
to implement the pseudo-score method by fitting the model and then fitting the reduced model for various
β0 values and comparing their fitted values using X2(β0).

This section illustrates pseudo-score confidence intervals by presenting four relatively simple models for
which ordinary score-test-based inference is difficult. We illustrate the models by fitting them to Table 1
from the 2006 General Social Survey in which U.S. respondents were asked, ‘How successful do you
think the government in America is nowadays in (a) Providing health care for the sick? (b) Protecting
the environment?’ The outcome categories are 1 = successful, 2 = neither successful nor unsuccessful,
3 = unsuccessful. Table 1 shows results for subjects of ages 18–25. We treat the nine cell counts as a
multinomial sample.

Let (y1, y2) denote the bivariate ordinal response in Table 1. One type of model analyzes the association
between the variables, such as by assuming a common global log odds ratio,

log

{
pr(y1 � i, y2 � j)pr(y1 > i, y2 > j)

pr(y1 � i, y2 > j)pr(y1 > i, y2 � j)

}
= β

for all i, j . The likelihood function is a complex function of the model parameter, making ordinary score
methods difficult. Pseudo-score inferences are relatively simple, by fitting the model for various fixed β0

using methods for maximizing a multinomial likelihood function subject to constraints. To fit the model,
we used the R function mph.fit written by Prof. Joseph Lang at the University of Iowa, which uses methods
developed in Lang (2004, 2005). Here, the constraints equate all four of the global log odds ratios to a
common unknown value for the general model and equate them to a fixed value β0 for the special cases. The
model with unspecified β fits Table 1 well, with Pearson goodness-of-fit statistic 1·75 based on 3 degrees of
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freedom and maximum likelihood estimate β̂ = 1·181 with standard error 0·318. The 95% pseudo-score
confidence interval for β is (0·556, 1·796). For example, the model under the constraint β0 = 0·556 or
under the constraint β0 = 1·796 has maximum likelihood fitted values for which X2(β0) = 3·84. The
profile likelihood interval is (0·562, 1·809), quite similar.

An alternative type of model compares the marginal distributions of this square table. The cumulative
logit marginal model

logit{pr(y1 � j)} = α j , logit{pr(y2 � j)} = α j + β ( j = 1, 2),

is designed to detect a location shift in the two marginal distributions. The multinomial likelihood function
for the nine cell probabilities cannot be explicitly expressed in terms of the model parameters, which limits
the applicability of ordinary score-test-based inference. We used Lang’s R function mph.fit to fit the model
and special cases under the constraint that cumulative logits in the two margins differ by a fixed value
β0. This marginal model with unconstrained β fits these data adequately, with goodness-of-fit statistic
X2 = 0·01 based on 1 degree of freedom and with β̂ = −0·230 having standard error 0·194. The 95%
pseudo-score confidence interval for β is (−0·617, 0·157). The profile likelihood confidence interval is
(−0·616, 0·153).

An alternative way to compare the response distributions is with a random effects model. For responses
(y1s, y2s) by subject s, a random intercept model is

logit{pr(y1s � j)} = us + α j , logit{pr(y2s � j)} = us + α j + β ( j = 1, 2),

where {us} are independent from a N (0, σ ) distribution with unknown standard deviation σ . The marginal
likelihood obtained by integrating out the random effects does not have closed form, and score confidence
intervals are difficult for this model. It is straightforward to obtain a pseudo-score confidence interval
for β or σ when σ > 0 by fitting the model for various fixed values of the parameter of interest. The
unrestricted model fits Table 1 adequately, with goodness-of-fit X2 = 2·0 based on 4 degrees freedom
and with β̂ = −0·319 having standard error 0·267 and σ̂ = 1·43 having standard error 0·31. The 95%
pseudo-score confidence interval for β is (−0·833, 0·200), and the profile likelihood confidence interval
is (−0·848, 0·201). The corresponding confidence intervals for σ are (0·83, 2·08) and (0·84, 2·10).

Among other models for which the pseudo-score method is simpler to implement than the ordinary score
method, because the likelihood function is not an explicit function of the model parameters, are models
that assign scores {v j } to ordered categories and describe mean responses. For Table 1, a regression form
of the model describes how the mean response for y2 changes linearly in the score for y1, and a marginal
model compares the marginal mean responses. The first of these models is

∑
j v j pr(y2 = v j | y1 = vi ) =

α + βvi . For this model we treat each row of the table as an independent multinomial sample. Lipsitz
(1992) and Lang (2005) presented algorithms for maximum likelihood fitting of such models. For Table 1,
we treat the health care opinion as the response variable and use the row numbers and column numbers
as the scores. The mean response model fits well, with Pearson goodness-of-fit statistic X2 = 0·29 based
on 1 degree of freedom. The 95% pseudo-score confidence interval for β is (0·143, 0·475). The profile
likelihood confidence interval is (0·145, 0·479).

4. SIMULATION EXAMPLE

We promoted pseudo-score inference by suggesting that it applies in cases in which ordinary score
inference is impractical to implement, and for many cases ordinary score inference has been seen to
perform well, even with relatively small samples. The previous section showed four examples of its use
when score inference is impractical, with the pseudo-score results being similar to profile likelihood
confidence intervals. To check whether the good performance may also apply to pseudo-score inference,
we conducted some simulations using models mentioned in the previous section. We found that the pseudo-
score method performed similarly to the profile likelihood interval and sometimes a bit better when the
sample size is quite small.

We illustrate typical results with the cumulative logit marginal model, logit[pr(y1 � j)] = α j and
logit[pr(y2 � j)] = α j + β. We simulated pseudo-score, profile likelihood and Wald confidence intervals
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Table 2. Simulated coverage percentages, with percentages of underestimation and overestimation in
parentheses, for interval estimation of β in marginal cumulative logit model with sample size n and

underlying bivariate normal distribution with correlation 0 or 0·5 in 2 × 2 and 3 × 3 tables

2 × 2 Correlation, with β = 0·0 Correlation, with β = 0·5
n Method 0·0 0·5 0·0 0·5
20 Pseudo-score 95·6 (2·2, 2·2) 95·1 (2·4, 2·5) 95·1 (2·4, 2·5) 95·0 (2·9, 2·1)

Profile likelihood 92·7 (3·7, 3·7) 91·6 (4·2, 4·2) 93·6 (3·6, 2·9) 93·2 (3·8, 3·2)
Wald 93·3 (3·3, 3·3) 92·9 (3·5, 3·5) 94·6 (2·4, 3·0 93·7 (2·9, 3·4)

50 Pseudo-score 94·7 (2·7, 2·7) 95·0 (2·5, 2·5) 95·1 (2·4, 2·5) 95·1 (2·6, 2·3)
Profile likelihood 94·7 (2·7, 2·7) 94·3 (2·8, 2·8) 94·6 (2·8, 2·6) 94·7 (2·9, 2·5)

Wald 94·7 (2·7, 2·7) 94·5 (2·8, 2·7) 94·8 (2·6, 2·6) 94·6 (2·6, 2·8)

3 × 3 Correlation, with β = 0·0 Correlation, with β = 0·5
n Method 0·0 0·5 0·0 0·5
20 Pseudo-score 92·6 (3·7, 3·7) 91·5 (4·2, 4·3) 93·7 (3·7, 2·5) 94·2 (3·2, 2·6)

Profile likelihood 91·4 (4·4, 4·3) 87·2 (6·3, 6·5) 92·1 (5·1, 2·8) 90·5 (6·3, 3·2)
Wald 93·0 (3·5, 3·5) 90·7 (4·5, 4·8) 93·9 (3·4, 2·6) 93·4 (3·4, 3·2)

50 Pseudo-score 94·5 (2·8, 2·7) 93·9 (3·0, 3·0) 94·5 (2·8, 2·7) 94·1 (3·3, 2·6)
Profile likelihood 94·1 (2·9, 2·9) 93·4 (3·3, 3·3) 94·2 (3·1, 2·7) 93·5 (3·7, 2·8)

Wald 94·3 (2·9, 2·8) 93·8 (3·1, 3·1) 94·3 (2·9, 2·8) 94·1 (2·9, 3·0)

for β with 2 × 2 and 3 × 3 tables having β = 0 and 0·5, n = 20 and 50, based on a joint distribution that
satisfied the model with uniform values for the row marginal probabilities and for joint cell probabilities
based on underlying bivariate normal distributions with correlations 0 and 0·5. Table 2 shows the estimated
coverage percentages based on 50 000 simulations; an estimator of a true coverage percentage of 95·0 has
standard error 0·1. For each case, the table also reports the directional error rates, estimating the percent-
ages of cases in which the interval falls below, or above, the parameter value. In the 3 × 3 case with β = 0·5
and n = 20, in about 2% of the simulations the table was such that the model-fitting algorithm did not
converge or at least one of the methods broke down, typically because of an infinite β̂, so in that case results
apply conditional on this not happening. We do not report results with unbalanced marginal probabilities,
because then the frequency of such problematic tables was excessive. Table 2 does not show substantially
different results for the three methods, but in many small-sample cases the pseudo-score method performed
somewhat better than the profile likelihood method. In this simulation and in others we conducted, when the
directional error rates differed substantially, the imbalance was a bit worse for the profile likelihood method
than for the pseudo-score method, as illustrated for the cases for 3 × 3 tables with n = 20 and β = 0·5.

While there is no guarantee that similar behaviour occurs for other models or cases, our simulations
were promising. The pseudo-score confidence interval is simple to construct and it shows promise of being
a good, general-purpose method for inference with categorical response data when the ordinary score
method is not feasible. The simulation results do not suggest that methodologists should abandon profile
likelihood methods in favour of the pseudo-score method. However, as discussed next, there is scope for
extending the pseudo-score method to cases in which likelihood-based methods are not available.

5. GENERALIZATIONS OF PSEUDO-SCORE INFERENCE

5·1. Pseudo-score inference for other discrete distributions

Suppose y1, . . . , yn are independent observations assumed to have some discrete distribution other than
the multinomial. A Pearson-type pseudo-score statistic for comparing models has the form

X2 =
∑

i

(μ̂i − μ̂i0)2

v(μ̂i0)
= (μ̂ − μ̂0)TV̂ −1

0 (μ̂ − μ̂0),
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where v(μ̂i0) denotes the estimated variance of yi under the null distribution for yi and V̂0 is the diagonal
matrix of such values (Lovison, 2005). For some cases, the pseudo-score confidence intervals of this
paper for multinomial models extend to other models for discrete data using this generalized statistic. An
example is estimating parameters of Poisson regression models.

One application for which this extended statistic is especially useful is analyzing discrete data ob-
tained with a complex sampling scheme, by replacing V̂0 by an appropriately inflated or nondiagonal
estimated covariance matrix. To illustrate, §3 treated the General Social Survey as a simple random
sample, but in reality it is a multi-stage sample that employs stratification and clustering. The code-
book for the survey suggests that because of its design, sampling variances of estimates are approxi-
mately 50% larger than obtained with simple random sampling. For the examples in §3, we can obtain
more relevant 95% confidence intervals from the set of β0 with

∑
i (μ̂i − μ̂i0)2/(1·5μ̂i0) � 3·84. For

the marginal cumulative logit model, for instance, we get the interval (−0·708, 0·248) for β instead of
(−0·617, 0·157). For such complex sampling designs, profile likelihood confidence intervals are not usually
available.

5·2. Quasilikelihood inference for marginal modelling

An interesting problem for future research is to extend pseudo-score inference to other quasilikelihood
analyses. A possible application is marginal modelling of clustered categorical responses. A popular
approach for marginal modelling uses generalized estimating equations. Because of the lack of a likelihood
function, Wald methods are commonly employed, together with a sandwich estimator of the covariance
matrix of model parameter estimates. For binary data, let yit denote observation t in cluster i , for t =
1, . . . , Ti and i = 1, . . . , n. Let yi = (yi1, . . . , yiTi )

T and let μi = E(yi ) = (μi1, . . . , μiTi )
T . Let Vi denote

the Ti × Ti covariance matrix of yi . For a particular marginal model, let μ̂i denote an estimate of μi ,
such as the maximum likelihood estimate under the naive assumption that the

∑
i Ti observations are

independent. Let μ̂i0 denote the corresponding estimate under the constraint that a particular parameter β

takes value β0. Let V̂i0 denote an estimate of the covariance matrix of yi under this null model. The main
diagonal elements of V̂i0 are μ̂i t0(1 − μ̂i t0) (t = 1, . . . , Ti ). Separate estimation is needed for the null
covariances, which are not part of the marginal model. With categorical explanatory variables, an estimate
of cov(yit , yiu) is the sample mean value of (yat − μ̂at0)(yau − μ̂au0) for the set of all clusters a that have
the same values of between-cluster explanatory variables as cluster i . This is also the sample estimate of
the covariance for the multinomial distribution for the 2 × 2 joint distribution of (yat , yau) for all such
clusters.

Now, consider X2(β0) = ∑
i (μ̂i − μ̂i0)TV̂ −1

i0 (μ̂i − μ̂i0). With categorical explanatory variables, X2(β0)
applies to two sets of fitted marginal proportions for the contingency table obtained by cross-classifying
the multivariate binary response with the various combinations of explanatory variable values. The set
of β0 values for which X2(β0) � χ2

1,a is a confidence interval for β. Unlike the generalized estimating
equations approach, this pseudo-score method does not require using the sandwich estimator, which can
be unreliable unless the number of clusters is large (Firth, 1993). Even with consistent estimation of Vi0,
however, the limiting null distribution of X2(β0) need not be exactly chi-squared because the fitted values
result from inefficient estimates, but preliminary simulations suggest that the chi-squared often provides
a good approximation.

5·3. Confidence intervals based on power divergence statistics

For testing goodness-of-fit of a multinomial model for a contingency table with counts {ni },
Cressie & Read (1984) presented a family of power divergence statistics that have the same asymp-
totic null chi-squared distribution as X2 and G2. The power divergence statistic for testing that a particular
parameter takes value β0 is

Pλ(β0) = 2

λ(λ + 1)

∑
μ̂i {(μ̂i/μ̂i0)λ − 1}, −∞ < λ <∞.
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Cressie et al. (2003) used such a statistic for tests comparing log-linear models. We define a power
divergence confidence interval to be the set of β0 values having Pλ(β0) �χ2

1,a . This encompasses profile
likelihood (λ = 0) and pseudo-score (λ = 1) intervals. For various models, it would be useful to see if this
method tends to work particularly well for a certain λ value.

6. CONCLUSION

We proposed a pseudo-score confidence interval for a multinomial model parameter by inverting a test
that uses the Pearson statistic. This confidence interval has the advantage that it is feasible in cases in
which ordinary score inference is not. Limited simulation studies showed it can provide similar or better
performance than profile likelihood confidence intervals, and extensions for complex sampling apply
in cases in which likelihood-based methods are not available. The proposed method is not intended to
compete with specifically designed small-sample methods or with higher-order refinements of asymptotic
methods (Brazzale et al., 2007). Our goal was to present a method that performs well in a wide variety of
settings and is simpler to implement than the ordinary score method. The authors can supply a document
containing code showing how to use the free software R (R Development Core Team, 2008) to obtain the
pseudo-score inferences reported in this article.
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