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SUMMARY

This paper surveys methods for comparing treatments on a binary response when observations occur for
several strata. A common application is multi-centre clinical trials, in which the strata refer to a sample
of centres or sites of some type. Questions of interest include how one should summarize the di�erence
between the treatments, how one should make inferential comparisons, how one should investigate whether
treatment-by-centre interaction exists, how one should describe e�ects when interaction exists, whether one
should treat centres and centre-speci�c treatment e�ects as �xed or random, and whether centres that have
either 0 successes or 0 failures should contribute to the analysis. This article discusses these matters in the
context of various strategies for analysing such data, in particular focusing on special problems presented by
sparse data. Copyright ? 2000 John Wiley & Sons, Ltd.

1. INTRODUCTION

For motivation regarding the questions addressed in this paper, we begin with an example. Table I
shows results of a clinical trial conducted at eight centres. The purpose was to compare two cream
preparations, an active drug and a control, with respect to their success or failure in curing an
infection [1]. This table illustrates a common situation in many pharmaceutical and biomedical
applications – comparison of two treatments on a binary response (‘success’ or ‘failure’) when
observations occur for several strata. The strata are often medical centres or clinics, or they may be
levels of a control variable, such as age or severity of the condition being treated, or combinations
of levels of several control variables, or they may be di�erent studies of the same sort evaluated
in a meta analysis [2–10].
Table I exhibits a potential di�culty that often occurs with multi-centre clinical trials or strati-

�cation using several control variables: the sample sizes for the treatments in many of the clinics
are modest, and the corresponding cell counts are relatively small. Indeed, for the control group
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Table I. Clinical trial relating treatment to response for eight centres.

Centre Treatment Response Total Per cent ‘success’
Success Failure

1 Drug 11 25 36 30.6
Control 10 27 37 27.0

2 Drug 16 4 20 80.0
Control 22 10 32 68.8

3 Drug 14 5 19 73.7
Control 7 12 19 36.8

4 Drug 2 14 16 12.5
Control 1 16 17 5.9

5 Drug 6 11 17 35.3
Control 0 12 12 0.0

6 Drug 1 10 11 9.1
Control 0 10 10 0.0

7 Drug 1 4 5 20.0
Control 1 8 9 11.1

8 Drug 4 2 6 66.7
Control 6 1 7 85.7

Total Drug 55 75 130 42.3
Control 47 96 143 32.9

Source of data: Beitler and Landis [1].

in two centres, all observations are failures. Ordinary maximum likelihood (ML) estimation can
provide badly biased (even in�nite) estimates of some parameters in such cases, and in certain
asymptotic frameworks it can even be inconsistent. Bias also occurs, however, from combining
strata to increase the stratum-speci�c sample sizes.
Among the questions of interest for data of this sort are the following: (i) How should one sum-

marize, descriptively, the di�erence between the treatments? (ii) How should one make inferential
comparisons of the treatments? (iii) How should one investigate whether there is treatment-by-
centre interaction? (iv) If such interaction exists, how should one describe the e�ect heterogeneity?
(v) Should centres be treated as �xed or random, and could that choice a�ect any results in a
substantive way? (vi) Should centres with 0 successes or with 0 failures contribute to descriptive
and inferential analyses? (vii) Should one combine centres or add small constants to empty cells
in descriptive and inferential analyses, for instance to use information that otherwise is discarded
in the statistical analysis?
In considering these questions, this article discusses strategies for analysing data of the form of

Table I. Section 2 presents some possible models for the data and corresponding summaries of the
e�ects. Section 3 presents ways of estimating those e�ects, and Section 4 illustrates the models
for Table I. Section 5 discusses inferential analyses for the models. Section 6 studies the e�ects of
severe sparseness on the analyses, using a data set that is even more sparse than Table I. Section 7
compares the strategies, makes some recommendations, and mentions extensions, alternative ap-
proaches, and open questions.
Possible analyses result from all combinations of several factors, including: (i) the choice of

link function relating response probabilities to predictors in the model; (ii) whether the model
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permits interaction; (iii) whether the model treats centres as random or �xed; (iv) whether
inference uses a small-sample analysis or an asymptotic one with the number of centres �xed
or an asymptotic one with the number of centres growing with the sample size; (v) whether
one uses a Bayes or a frequentist approach or some non-likelihood-based method such as gen-
eralized estimating equations (GEE). Here, we consider only the frequentist approach and binary
responses. Other papers have presented related discussion of some of these issues in the contexts
of Bayesian approaches [4; 6; 11; 12] and continuous responses [13–15]. Also, we do not consider
other issues of importance in actual clinical trials, such as adequacy of sample size and selection
of centres.
This paper does not claim any new or surprising results, and although it is called a ‘tutorial’,

we fully expect that many readers will have strong opinions about the appropriateness of certain
methods. We hope, however, that a uni�ed discussion of various strategies may be helpful for
many biostatisticians and quantitatively-oriented medical researchers and perhaps even stimulate
research on alternative approaches.

2. MODELS AND SUMMARIES OF EFFECTS

For data in the form of Table I, let X denote treatment, let Y denote the response variable, and
let Z denote the strati�cation factor. Let X =1 denote the drug and X =2 denote the control (or
placebo), and let Y =1 denote ‘success’ and Y =2 denote ‘failure’. Let �ik =P(Y =1|X = i; Z = k),
for i=1; 2; k =1; : : : ; K . Let nijk denote the cell count for treatment i and response outcome
j in stratum k. In this article we often refer to Z using the generic term ‘centre’, although
as mentioned above it might refer to di�erent studies or combinations of levels of control
variables.

2.1. Models assuming a lack of interaction

A simple model for Table I, although usually only plausible to a rough approximation, has additive
treatment and centre e�ects on some scale. For instance, with the logit link function (that is, log
of the odds) logit(�ik)= log[�ik =(1− �ik)], this is

logit(�1k)= �k + �=2; logit(�2k)= �k − �=2; k =1; : : : ; K (1)

That is, � is the di�erence between the logit for drug and the logit for control. One could include
an overall intercept in this model and then use a constraint such as

∑
k �k =0 or �1 = 0, but we

use parameterization (1) to discuss more easily (later in the paper) the e�ects of strata with 0
successes or with 0 failures.
This model assumes a lack of treatment-by-centre interaction. For the logit scale, � refers to a

log-odds ratio, so a lack of interaction implies that the true odds ratio e� between X and Y is the
same in all centres. Usually primary interest focuses on estimating the treatment e�ect � rather
than the centre e�ects {�k}.
When additivity exists, it need not be on the logit scale. In addition, many practitioners have

di�culty interpreting the odds ratio. One could use the same predictor form with an alternative
link function such as the probit or log-log or complementary log-log, although these can also be
di�cult to interpret. Simpler interpretations occur with the log link, by which

log(�1k)= �k + �=2; log(�2k)= �k − �=2 (2)
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With this model, exp(�)= �1k =�2k is a ratio of success rates, analogous to a relative risk in each
centre. (Here, we use notation � rather than � to reect the e�ect having a di�erent meaning
than in model (1); likewise, the intercept also refers to a di�erent scale, but we use common �k
notation for simplicity since this parameter is not the main focus of interest.)
Model (2) has the structural disadvantage of constraining �k±�=2 to be negative, so that �ik falls

between 0 and 1. Iterative methods for �tting the model may either ignore this, perhaps yielding
estimates of some �ik above the permissible [0; 1] range, or may fail to converge if estimates at
some stage violate this restriction; normally this does not happen when {�ik} are not near 1. This
model approximates the logit model when {�ik} are close to 0, but it has interpretations for ratios
of probabilities rather than ratios of odds. Model (2) refers to a ratio of success rates, and unlike
other models considered in this subsection, when it holds it no longer applies if one interchanges
the labelling of ‘success’ and ‘failure’ categories.
Simple interpretations also occur with the identity link, by which

�1k = �k + �=2; �2k = �k − �=2 (3)

For this model, the probability of success is �1k − �2k = � higher for drug than control in each
centre. This model has the severe constraint that �k ± �=2 must fall in [0; 1]. Iterative methods
often fail for it. It is unlikely to �t well when any �ik are near 0 or 1 as well as somewhat
removed from those boundary values, since smaller values of �1k − �2k typically occur near the
parameter space boundary. Thus, the model has less scope than the ones with logit and log links.
Even so, unless the model �ts very poorly, an advantage of summarizing the e�ect by � is its
ease of interpretation by non-statisticians.
In summarizing association for a set of centres by a single measure such as the odds ratio or

relative risk, it is preferable to use the measure that is more nearly constant across those centres.
In practice, however, for sparse data it is usually di�cult to establish superiority of one link
function over others, especially when all {�ik} are close to 0. This article discusses all three of
these link functions but pays greatest attention to the logit, which is the most popular one in
practice.

2.2. Random e�ects models

The standard ML approach for �tting models such as (1) treats {�k} as �xed e�ects. In many
applications, such as multi-centre clinical trials and meta analyses, the strata are themselves a
sample. When this is true and one would like inferences to apply more generally than to the strata
sampled, a random e�ects approach may be more natural. In practice, the sample of strata are
rarely randomly selected. However, Grizzle [16] expressed the belief of many statisticians when
he argued that ‘Although the clinics are not randomly chosen, the assumption of random clinic
e�ect will result in tests and con�dence intervals that better capture the variability inherent in
the system more realistically than when clinic e�ects are considered �xed’. This approach seems
reasonable to us for many applications of this type.
For the logit link, a logit-normal random e�ects model [17] with the same form as (1)

logit(�1k)= ak + �=2; logit(�2k)= ak − �=2 (4)

assumes that {ak} are independent from a N(�; �) distribution. The parameter �, itself unknown,
summarizes centre heterogeneity in the success probabilities. This model also makes the strong
assumption that the treatment e�ect � is constant over strata.
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For binary data, random e�ects models are most commonly used with logit or probit link
functions. A structural defect exists with the log and identity links in treating {ak} as normally
distributed; for any parameter values with �¿0, with positive probability a particular realization
of the random e�ect corresponds to �ik outside [0; 1].

2.3. Treatment-by-centre interaction

Even if a model that is additive in centre and treatment e�ects �ts sample data adequately, it is
usually unrealistic to expect the true association to be identical (or essentially identical) in each
stratum. This subsection considers models that permit interaction. With a �xed-e�ects approach,
the model

logit(�1k)= �k + �k=2; logit(�2k)= �k − �k=2 (5)

has odds ratio e�k in centre k. It is saturated (residual d:f :=0), having 2K parameters for the
2K binomial probabilities. The ML estimate of �k is the sample log-odds ratio in stratum k,
�̂k = log(n11kn22k =n12kn21k).
Usually, such as in meta analyses, one would want to extend such a model to determine expla-

nations for the variability in associations among the strata. When the strata have a natural ordering
with scores {zk}, an unsaturated model (d:f :=K − 2) results from assuming a linear trend in
the log-odds ratios; that is, by replacing �k in model (5) by � + zk�. Often other explanatory
variables are available for modelling the odds ratio [18–20]. Then, one could construct a model
of form

�k = z′k[

describing the centre-speci�c log-odds ratios, where zk is a column vector of explanatory variables
and [ is a column vector of parameters. A related model adds a random e�ect term for each centre
to reect unexplained variability [21].
For the random e�ects approach without other explanatory variables, an additional parameter

can represent variability in the true e�ects. The logit-normal model is

logit(�1k)= ak + bk=2; logit(�2k)= ak − bk=2 (6)

where {ak} are independent from N(�; �a); {bk} are independent from N(�; �b), and {ak} are
independent of {bk}. Here, � is the expected value of centre-speci�c log-odds ratios, and �b
describes their variability. An equivalent model form is logit(�ik)= ak + �xi + bik , where xi is
a treatment dummy variable (x1 = 1; x2 = 0) and b1k and b2k are independent N(0; �), where �2

corresponds to �2b=2 in parameterization (6). Note that one should not formulate the model as
logit(�ik)= ak + bkxi, since the model then imposes greater variability on the logit for the �rst
treatment unless one permits (ak ; bk) to be correlated.
Analogous random e�ects models apply with alternative link functions. Again, the models with

identity or log link are structurally improper when either variance component is positive. This
suggests a caution, as results reported for software using a particular estimation method may
depend on whether the parameter constraints are recognized. In our experience, the identity link
often has convergence problems. Good initial estimates of (�; �; �a; �b) can be helpful, such as
using values suggested by �xed e�ects modelling. In some applications it is also sensible to let
(ak ; bk) be correlated, by treating it as a bivariate normal random e�ect [22]. With the identity
link, for instance, centres with ak close to 0 may tend to have values of bk relatively close to

Copyright ? 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 19:1115–1139



1120 A. AGRESTI AND J. HARTZEL

0. We do not discuss such models here, as such modelling is better supported with moderate to
large K , and our examples have relatively small K with sparse data. With such examples, some
will think it bold or foolhardy of us to use even relatively simple random e�ects models!

3. MODEL FITTING AND ESTIMATING EFFECTS

We now discuss model �tting and parameter estimation. Unless stated otherwise, the discussion
refers to the logit models.

3.1. Model �tting

It is straightforward to �t the �xed e�ects models with standard software. Possibilities include
software for binary responses such as PROC LOGISTIC in SAS, or software for generalized
linear models such as PROC GENMOD in SAS and the glm function in S-plus.
Random e�ects models for binary data are more di�cult to �t. One must integrate the joint mass

function of the responses with respect to the random e�ects distributions to obtain the likelihood
function [23], which is a function of � and the other parameters of those distributions. With the
logit interaction model (6), for instance, the likelihood function equals

‘(�; �; �a; �b)=�k�i

[ ∫
ak

∫
bk

�ni1kik (1− �ik)ni2k dG(bk) dF(ak)
]

where F is a N(�; �a) CDF, G is a N(�; �b) CDF, �1k =exp(ak + bk=2)=[1 + exp(ak + bk=2)],
and �2k =exp(ak − bk=2)=[1 + exp(ak − bk=2)]. One can approximate the likelihood function using
numerical integration methods, such as Gauss–Hermite quadrature. The approximation improves as
the number of quadrature points q increases, more points being needed as the variance components
increase in size. Performance is enhanced by an adaptive version of quadrature that transforms the
variable of integration so that the integrand is sampled in an appropriate region [24; 25]. Having
approximated the likelihood, one can use standard maximization methods such as Newton–Raphson
to obtain the estimates. As a by-product, the observed information matrix, based on the curvature
(second derivatives) of the log-likelihood at the ML estimates, is inverted to provide an estimated
asymptotic covariance matrix.
Other approximations for integrating out the random e�ects lead to related approximations of

the likelihood function and the ML estimates. Most of these utilize linearizations of the model.
A Laplace approximation yields penalized quasi-likelihood (PQL) estimates [26], and a related
generalization includes an extra scale parameter [27]. These approximations can behave poorly
when variance components are large or when distributions are far from normal, such as Bernoulli
or binomial with small indices at each setting of predictors [25; 26; 28]. When feasible, it is better to
use adaptive Gauss–Hermite quadrature with su�ciently large q, the determination of ‘su�ciently
large’ being based on monitoring the convergence of estimates and standard errors as q increases.
Other promising ML approximations use Monte Carlo approximation methods [28; 29], for which
the approximation error is estimable and decreases as the number of simulations increases. One
can also use Markov chain Monte Carlo methods with an approximating Bayes model that uses at
prior distributions for the other parameters [30], although the danger exists of improper posterior
distributions [31–33].
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Most major software packages are not equipped to �t generalized linear models with random
e�ects. Version 7 of SAS includes PROC NLMIXED, which can provide a good approxima-
tion to ML using adaptive Gauss–Hermite quadrature. The linearization approximations [26; 27]
are available in earlier versions with a SAS macro, called GLIMMIX, that uses iterative call-
ing of PROC MIXED. Most other specialized programs for hierarchical models with random
e�ects likewise use various normal approximations to the working response in the mixed logit
model.

3.2. The sparse asymptotic framework

In many applications, such as when the strata are centres, asymptotic arguments for increasing the
sample size most naturally refer to increasing simultaneously the number of strata, K . A disad-
vantage then of the usual large-sample methods with the �xed e�ects logit models is that they are
based on n→∞ with a �xed number of parameters (for example, K �xed), whereas the more
appropriate ‘sparse asymptotic’ framework has K→∞ as n→∞. For sparse asymptotics, consis-
tency of ordinary ML estimators breaks down for the odds ratio, relative risk, and di�erence of
proportions [34]. An extreme case (Anderson [35], p. 244) occurs with matched-pairs data (two
observations for each k), in which case the ordinary ML estimator of � in model (1) converges
in probability to 2�.
The sparse asymptotic framework does not cause special problems for the random e�ects ap-

proach. After integrating out the random e�ects, the likelihood function depends only on the
remaining parameters (for example, �; � and � in model (4)), so the parameter space does not
increase as K does. In particular, if the random e�ects model holds, the ordinary ML estimator of
� is consistent. In practice, however, if n and K have only moderate size, as in Table I, inferences
about the size of the variance components may be very imprecise.
In the logit �xed e�ects model (1), the conditional likelihood approach provides an alter-

native way of guaranteeing a consistent estimator of �. With it, one eliminates {�k} in con-
structing the likelihood function by conditioning on their su�cient statistics [36]. Software is
available for this approach, such as LogXact [37]. It has the advantage of not requiring a dis-
tributional assumption about the random e�ects yet still being valid for sparse asymptotics. A
disadvantage of conditional ML is that the �tting procedure does not provide predicted values
for {�k} or an estimate of their variability. Also, this approach is applicable only with the logit
link (that is, only the canonical link of a generalized linear model provides reduced su�cient
statistics).

3.3. Mantel–Haenszel type estimators of common e�ects

An alternative estimator of � in the no interaction model (1) is the Mantel–Haenszel (M–H)
estimator [38]

�̂MH = log
(∑

k n11kn22k =n++k∑
k n12kn21k =n++k

)
(7)

Like the conditional ML estimator, it is consistent both in sparse-stratum (K increases with n) or
large-stratum (K �xed but n increases) asymptotics. It has the advantage over conditional ML of
simplicity. It su�ers no e�ciency loss when �=0 and usually little otherwise.
Mantel–Haenszel type estimators are also available for the relative risk and the di�erence of

proportions. As noted in Section 2, models for these parameters have severe parameter restrictions.
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Even if the model holds only approximately, however, a summary measure of this type is useful
for communication with scientists who are unfamiliar with odds ratios. The M–H type estimator
of a common log relative risk [39; 40] (that is, � in model (2)) is

�̂MH = log
(∑

k n11kn2+k =n++k∑
k n21kn1+k =n++k

)
(8)

whereas the M–H type estimator of a common di�erence of proportions [34] (that is, � in model
(3)) is

�̂MH =
∑

k(n11kn2+k =n++k − n21kn1+k =n++k)∑
k n1+kn2+k =n++k

(9)

If a no interaction model �ts adequately but the data are highly sparse, the corresponding M–H
estimator may even be preferred to the ML estimator, because of the bias that exists in sparse
asymptotics [34] for the ML estimator. The conditional ML approach does not apply to the log
and identity link functions and the random e�ects model has structural problems (for example,
probabilities outside the [0; 1] interval), so these estimates are particularly useful for these link
functions.
Given their good performance under sparse asymptotics and their ease of computation, one might

consider always using M–H instead of ML estimators. However, for large-stratum asymptotics
(�xed K), M–H estimators lose some e�ciency compared to ML, and the e�ciency loss can be
considerable for �̂MH and �̂MH in some cases [34]. Moreover, software for ML estimation is widely
available for �xed e�ects analyses and becoming more so for random e�ects analyses. Thus, if
the data have moderate to large samples in each stratum, it is better to use the model-based ML
estimators.

3.4. Centre estimates

In most applications, main interest focuses on the treatment e�ect and its variability among centres.
However, centre estimates also result from the �xed e�ects or random e�ects ML approaches.
With the random e�ects approach, the expected values of {ak} given the data are analogues of
best linear unbiased predictors (BLUP) for mixed models with normal responses. These expected
values themselves depend on unknown parameters, so one obtains the predicted values by plugging
in the ML estimates of those parameters. Ordinary standard errors of these predictors, like those of
empirical Bayes estimators, do not take into account that the variance component is estimated rather
than known; hence, they tend to be too small, and adjustments are available [41; 42]. Adjustments
are also available to help account for the bias in estimating the variance components [43], which
can be considerable, but we shall not address that issue here.
For �xed e�ects logit models, the su�cient statistic for �k is n+1k , conditional on the binomial

sample sizes in that stratum. By contrast, for the random e�ects models estimates of centre e�ects
‘borrow from the whole’, and the estimate of ak can be considerably a�ected by results in other
strata. As the sample size grows in stratum k, however, the inuence of other strata decreases.

3.5. Logit model: Allowing interaction

For the random e�ects model (6) that permits interaction, the complexity of model �tting is com-
pounded by estimating two variance components. When the data are sparse but do contain su�cient

Copyright ? 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 19:1115–1139



COMPARING TREATMENTS ON A BINARY RESPONSE 1123

information to provide estimates of (�; �; �a; �b), the estimated average e�ects (�̂; �̂) are more re-
liable than the estimated variability (�̂a; �̂b) of e�ects, especially when K is not especially large.
When �̂b¿0, the standard error of �̂ is typically larger than with the model (4) of homogeneous
odds ratios (that is, the special case in which �b=0), because of the extra variance component
due to treating the treatment e�ect as random rather than �xed.
Liu and Pierce [44] proposed an alternative way of estimating (�; �b) for the model (6) that

assumes the log-odds ratios are a N(�; �b) random sample. They �rst eliminated {ak} by a con-
ditioning argument, focusing solely on the variability in association, and then provided a simple
solution based on an approximation to the likelihood function using Laplace’s method. They sug-
gested that their method is primarily intended for cases in which cell counts are relatively large
and the variability �b is not great, say, �b¡1. See Raghunathan and Ii [45] and Liang and Self
[46] for related work.

4. MODEL FITTING FOR TABLE I

We now apply these methods to Table I. For these data the sample success rates vary markedly
among centres both for the control and drug treatments, but in all except the last centre that rate is
higher for drug. Normally in using models with random centre and possibly random treatment ef-
fects, one would prefer to have more than K =8 centres; keeping in mind the di�culty particularly
of getting good variance component estimates with such a small value of K , we use these data to
illustrate the models. Table II shows the use of SAS (PROC NLMIXED and PROC GENMOD) for
ML �tting of logit models to Table I. Alternative link functions utilize similar statements. For the
random e�ects interaction model, for instance, the code pi=exp(a+b*treat) requests the log link
model and pi=a+b*treat requests the identity link model. In the NLMIXED code in Table II
for the no interaction model with random centre e�ects, the ‘predict’ option requests the logit
estimates of ak ± �=2 for the eight centres and stores them in the data set OUT1.
Table III summarizes results of estimating the treatment e�ect � using various logit models. The

parameter � is the common log-odds ratio for the no interaction models and the expected value
of the log-odds ratio for the interaction model with random treatment e�ects. For the random
e�ects model (6) permitting interaction, the estimated standard deviation of the log-odds ratios
is relatively small, �̂b=0.15 (standard error = 1:1). For all approaches, estimates of the common
log-odds ratio or its expected value are similar. In each case the estimated value of about 0.75
equals about 2.5 standard errors; this corresponds to an estimated common odds ratio of about
e0:75 = 2:1 and a 95 per cent con�dence interval for the common odds ratio of about (1.2, 3.8).
There is considerable evidence of a drug e�ect, but with such a small sample one cannot determine
whether that e�ect is weak or moderate.
For the interaction model, since �̂b is small, the random e�ects model provides a considerable

smoothing of the sample odds ratios. Table IV shows the eight sample odds ratios and their random
e�ects model estimates, computed by exponentiating the estimated expected log-odds ratios given
the sample data. The smoothed estimates show considerably less variability and do not have the
same ordering as the sample values. For instance, the smoothed estimate is greater for centre 3
than for centre 6 even though the sample value is in�nite for the latter, partly reecting the greater
shrinkage that occurs when sample sizes are smaller. When �̂b=0, the interaction model provides
the same �t as the no interaction model, so the model estimated odds ratios are identical in each
centre.
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Table II. Example of SAS code for using GENMOD to �t �xed e�ects logit model and NLMIXED to �t
random e�ects logit models to Table I.

data binomial;
input center treat y n @@ ; * y successes out of n trials;
if treat = 1 then treat = .5; else treat =−.5;
cards;
1 1 11 36 1 0 10 37 2 1 16 20 2 0 22 32
3 1 14 19 3 0 7 19 4 1 2 16 4 0 1 17
5 1 6 17 5 0 0 12 6 1 1 11 6 0 0 10
7 1 1 5 7 0 1 9 8 1 4 6 8 0 6 7
;
run;

proc genmod data = binomial; * fixed effects, no interaction model;
class center;
model y/n = treat center / dist = bin link = logit noint;

run;

proc nlmixed data = binomial qpoints = 15; * random effects, no interaction;
parms alpha =−1 beta = 1 sig = 1; * initial values for parameter estimates;
pi = exp(a + beta*treat)/(1+exp(a + beta*treat)); * logistic formula for prob;
model y ~ binomial(n, pi);
random a ~ normal(alpha, sig*sig) subject = center;
predict a + beta*treat out = OUT1;

run;

proc nlmixed data = binomial qpoints = 15; * random effects, interaction;
parms alpha =−1 beta = 1 sig a = 1 sig b = 1; * initial values;
pi = exp(a + b*treat)/(1+exp(a + b*treat));
model y ~ binomial(n, pi);
random a b ~ normal([alpha,beta], [sig a*sig a,0,sig b*sig b]) subject = center;

run;

Table III also summarizes estimates for other descriptive measures, with ML results obtained
using GENMOD and NLMIXED in SAS. As noted before, the restricted parameter space for the
log and identity links can provide problems. Having good starting values increases the chance of
proper convergence. We used starting values near the estimates obtained with the SAS GLIMMIX
macro.
For the random e�ects interaction model with the log link, the ML estimated standard deviation

of the log relative risks equals 0. Hence, the �tted relative risks are the same in each centre,
the estimate of 1.27 being identical to that for the random e�ects no interaction model. For this
sample the association is more nearly constant for the relative risk than the odds ratio.
For the random e�ects interaction model with the identity link, we were unable to obtain conver-

gence with NLMIXED. Using GLIMMIX, Littell et al. [47] reported an estimated mean of 0.120
(standard error = 0:051) and an estimated standard deviation of 0.098 for the clinic-speci�c di�er-
ences of proportions, but we could not obtain these results even with GLIMMIX. A weighted least
squares estimate of the clinic-speci�c di�erence of proportions [8] is 0.131 (standard error = 0:052)
with an estimated standard deviation of 0.075.
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Table III. Estimated treatment e�ect and standard error, and results of likelihood ratio (LR) and Wald tests
of hypothesis of no treatment e�ect, for Table I.

Measure Interaction Centre Method Estimate Standard Wald LR P-value
(Equation number) error statistic statistic

Odds ratio (1) No Fixed ML 0.777 (2.2) 0.307 6.4 6.7 0.01
Cond. ML 0.756 (2.1) 0.303 6.2
M–H 0.758 (2.1) 0.304 6.2

(4) Random ML 0.739 (2.1) 0.300 6.0 6.3 0.01
(6) Yes Random ML 0.746 (2.1) 0.325 5.3 4.6 0.03

Relative risk (2) No Fixed ML 0.247 (1.3) 0.126 3.8 3.9 0.05
M–H 0.354 (1.4) 0.142 6.2

Random ML 0.241 (1.3) 0.126 3.6 3.8 0.05
Yes Random ML 0.241 (1.3) 0.126 3.6 3.7 0.08

Di�erence of prop. (3) No Fixed ML 0.137 0.055 6.2 6.6 0.01
M–H 0.130 0.050 6.7

Random ML 0.148 0.055 7.2 7.6 0.01

Odds ratio and relative risk estimates appear in parentheses next to their log estimates. Wald and LR test statistics have
approximate null chi-squared distributions with d:f :=1; P-value refers to LR statistic.

Table IV. Estimated centre-speci�c odds ratio and relative risk for Table I, based on
sample and on predictions for random e�ects interaction models.

Centre Odds ratio Relative risk
Sample Model Sample Model

1 1.19 2.02 1.13 1.27
2 1.82 2.09 1.16 1.27
3 4.80 2.19 2.00 1.27
4 2.29 2.11 2.13 1.27
5 ∞ 2.18 ∞ 1.27
6 ∞ 2.12 ∞ 1.27
7 2.00 2.11 1.80 1.27
8 0.33 2.06 0.78 1.27

5. INFERENCE ABOUT EFFECTS

5.1. Inference for logit models

For the �xed and random e�ects logit models, standard methods yield inferences about the treatment
e�ect. For instance, the likelihood-ratio test statistic is minus twice the di�erence in maximized
log-likelihoods between model (1) or (4) with �=0 and the model with unrestricted �. It has a
null chi-squared distribution with d:f :=1, as does the Wald statistic, which is the squared ratio
of the estimate to its standard error. The standard error is obtained from the inverse information
matrix. The simple Wald form of 95 per cent con�dence interval for the common odds ratio is
obtained by exponentiating the endpoints of �̂ ± 1:96(standard error). Better, one could construct
a pro�le likelihood con�dence interval (for example, for the �xed e�ects solution using the LRCI
option in PROC GENMOD) or an interval based on inverting a score test [48].
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With the �xed e�ects approach, for highly sparse data it is preferable to conduct inference using
the conditional likelihood. For model (1), this likelihood depends only on �. A 95 per cent large-
sample likelihood-based con�dence interval consists of all � values for which minus two times
the log-likelihood falls within 3.84 (the 95th percentile of the �21 distribution) of the maximum.
Tests and con�dence intervals with this approach are available with LogXact.

5.2. Mantel–Haenszel inference

For model (1), the Mantel–Haenszel estimator (7) of a common log-odds ratio has a standard
error estimate [49] that is valid for both large-stratum and sparse-stratum asymptotics. The variance
estimate equals

v̂ar(�̂MH) =

∑
k (n11k + n22k)(n11kn22k)=n

2
++k

2(
∑

k n11kn22k =n++k)
2 +

∑
k(n12k + n21k)(n12kn21k)=n

2
++k

2(
∑

k n12kn21k =n++k)
2

+

∑
k [(n11k + n22k)(n12kn21k) + (n12k + n21k)(n11kn22k)]=n

2
++k

2(
∑

k n11kn22k =n++k)(
∑

k n12kn21k =n++k)

One can use this to form a con�dence interval for the common log-odds ratio, exponentiating
endpoints to obtain the interval for the odds ratio. Like the conditional ML approach, this is
preferred over ordinary intervals for the �xed-e�ects logit model (1) when the data are highly
sparse.
Similarly, estimated variances for both types of asymptotics are available for the estimator of

a common di�erence of proportions (9) and the estimator of a common log relative risk (8). Let
Rk = n11kn2+k =n++k and Sk = n21kn1+k =n++k . For the log relative risk, the estimated variance is [34]

v̂ar(�̂MH)=

∑
k(n1+kn2+kn+1k − n11kn21kn++k)=n2++k)

(
∑

k Rk)(
∑

k Sk)
(10)

For the di�erence in proportions, the estimated variance is [50]

v̂ar(�̂MH)=
�̂MH(

∑
k Pk) + (

∑
k Qk)

(
∑

k n1+kn2+k =n++k)
2 (11)

where

Pk = [n21+kn21k − n22+kn11k + n1+kn2+k(n2+k − n1+k)=2]=n2++k
and

Qk = [n11kn22k + n21kn12k ]=2n++k

A disadvantage of these inferences is their restriction to the no interaction models and their
treatment e�ects. Since the variance formulae assume a common treatment e�ect for each centre,
they should not be used when substantial heterogeneity exists.

5.3. Tests of no interaction

A test of no interaction for the �xed e�ects logit model is equivalently a goodness-of-�t test of
model (1) and a test for equality of the K true odds ratios. When the data are not sparse and K is
�xed, one can use ordinary likelihood-ratio and Pearson chi-squared statistics for this purpose, with
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d:f :=(K − 1). The likelihood-ratio statistic refers to the likelihood-ratio test comparing the model
(1) to the saturated model. An alternative chi-squared test provided by some software for this
case is the Breslow–Day test [36; 51], which is based on heterogeneity in the K sample log-odds
ratios. For this situation with K �xed, an exact conditional test [52] of equality of odds ratios is
available in StatXact [53].
When the stratum-speci�c sample sizes are small and K is large, none of these tests has much

power. It may be possible to increase power by checking for a particular type of interaction, such
as a linear trend in the log-odds ratios when the strata have a natural ordering. For the �xed e�ects
approach, a bene�t of using the simpler model when the degree of interaction is not signi�cant is
that the common odds ratio estimator can be a better estimator of the true stratum-speci�c odds
ratios than the separate sample values (for example, having smaller total mean squared error) even
when those true odds ratios are not identical, for the usual reasons of model parsimony.
For the random e�ects approach, one can test for a lack of interaction by testing that �b=0 in

model (6). The score test with an arbitrary mixture distribution for the random e�ect leads to an
asymptotically normal statistic [46]. Under the null, the likelihood-ratio statistic equals 0 (that is,
because �̂b=0) or approximately a �21 variate, each with probability about 0.5; thus, the usual chi-
squared right-tail probability is halved to get the P-value. However, for random e�ects models, one
might question the entire enterprise of conducting tests of no interaction. Typically the likelihood
reveals that values of �b¿0 are consistent with the data, and when �̂b¿0 the con�dence interval
for � with the interaction model is somewhat wider than with the no interaction model, better
reecting the actual heterogeneity that ordinarily occurs in practice.

5.4. Summarizing e�ects when interaction exists

When signi�cant interaction exists, with the �xed e�ects approach the saturated model provides
an odds ratio estimate for each stratum. Alternatively, a covariate may be apparent such that odds
ratios are more nearly constant after adjusting for that covariate. For instance, there may be one
or two centres that are considerably di�erent from the others in some way. With the random
e�ects approach (6), it is natural to describe the interaction by (�̂; �̂b), providing an estimate of
an average log-odds ratio and the variability about that average. With the random e�ects model,
one can also obtain approximate BLUP estimates of the log-odds ratios {bk}. These provide a
smoothing of the sample log-odds ratio estimates from the �xed-e�ects saturated model. As the
sample size increases within a particular stratum, the random e�ects estimate becomes more similar
to the sample value for that stratum.
Similar remarks regarding interaction apply for analyses involving the di�erence of proportions

and relative risk. For example, for �xed K , large-sample d:f :=K − 1 chi-squared tests exist of
whether the di�erence of proportions is the same for all strata [8; 48]. A corresponding test holds
for sparse data with K large [3]. When interaction exists with a �xed e�ects model with parameter
�k in stratum k, an alternative [54–56] to simply reporting the stratum-speci�c estimates is to
estimate

∑
k �k�k , where �k is the population proportion classi�ed in stratum k (or if this is

unknown, simply �k =1=K).
For the random e�ects interaction model with identity link, alternative estimates exist of the mean

and variance of the stratum-speci�c di�erences of proportions [1; 8]. These approaches weight the
sample estimate from each stratum inversely proportional to its estimated variance. A modi�ed
approach uses an alternative weighting scheme to reduce bias [57]. An analogous random e�ects
analysis exists for the relative risk [9].
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5.5. Goodness-of-�t

We mentioned above the goodness-of-�t test for the �xed e�ects models. These treat K as �xed.
For sparse data with large K , these tests lack power and may be poorly approximated by chi-
squared distributions. Model checking is very challenging with highly sparse data.
The random e�ects model (4) assuming no interaction also satis�es the �xed e�ects structure

(1). So, lack of �t in the ordinary goodness-of-�t test for model (1) also implies lack of �t in
the random e�ects model. When the random e�ects model holds, its �t behaves asymptotically
like that of the �xed e�ects model, for �xed K with n→∞. Similarly, for the models permitting
interaction with �xed K , the �xed and random e�ects estimates are asymptotically equivalent. It
is not obvious how to check the �t of such models for sparse asymptotics in which K→∞. The
usual goodness-of-�t statistics are then approximately normal [58], and there is some evidence that
the jack-knife can work well in estimating asymptotic variances of such statistics [59]. We are
unaware, however, of any checks on this yet for models of the type discussed in this article.

5.6. Inferential results for Table I

Table III also shows standard errors for the various estimators and the results of Wald and
likelihood-ratio tests of no e�ect. Substantive results are similar with all link functions, with
evidence of a better success rate with drug than with control, although the model-based inferences
with the relative risk provide slightly less evidence of association. The estimated e�ect can be
described by a stratum-speci�c odds ratio of about 2.1, relative risk of about 1.3, or di�erence of
proportions of about 0.14. For each measure the data do not contradict the models that assume
a lack of interaction; for instance, the interaction models provide similar summary estimates and
standard errors. Also, the traditional goodness-of-�t statistics do not show lack of �t when applied
to the �xed e�ects versions of the no interaction models. The Pearson statistic equals 8.0 for the
logit link, 9.9 for the log link, and 9.9 for the identity link, each with d:f :=7.

6. EFFECTS OF SEVERE SPARSENESS

This section summarizes some special considerations and results when the data are severely sparse,
such as e�ects of centres containing certain patterns of empty cells and e�ects of modifying the
data such as by adding constants to empty cells or combining centres. Table V is an example of
such data [60]. This table was shown to the �rst author a few years back by an attendee of a short
course on categorical data analysis. It shows results for �ve centres of a clinical trial designed to
compare an active drug to placebo in treating toenail fungal infections. Again, success rates vary
markedly among centres, but note that the binomial sample sizes are very small. Here, two centres
have no successes and one centre has only one success. Although one cannot expect to conduct
precise inference with such small n and K and although normally K would be much larger than
5 in the application of random e�ects models (especially to estimate variance components), these
data are useful for illustrating e�ects of such severe sparseness.
Here, a reasonable asymptotic framework is the sparse one whereby K increases proportionally

to n. When n is small, it is di�cult to detect when heterogeneity truly exists among strata in the
treatment e�ects. Thus, our remarks are directed primarily toward models such as (1) and (4),
that is, we assume that reality is reasonably well described by the �xed e�ects or random e�ects
model with homogeneous odds ratios.
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Table V. Clinical trial relating treatment to response for �ve centres.

Centre Treatment Response Total Per cent ‘success’
Success Failure

1 Active drug 0 5 5 0.0
Placebo 0 9 9 0.0

2 Active drug 1 12 13 7.7
Placebo 0 10 10 0.0

3 Active drug 0 7 7 0.0
Placebo 0 5 5 0.0

4 Active drug 6 3 9 66.7
Placebo 2 6 8 25.0

5 Active drug 5 9 14 35.7
Placebo 2 12 14 14.3

Total Active drug 12 36 48 25.0
Placebo 4 42 46 8.7

Source: Agresti [60], p. 193.

For severely sparse data, the strata sample sizes are very small and using ordinary ML with the
�xed e�ects model may provide seriously biased estimates. If that approach is used, it is safest to
do so using conditional ML estimation.

6.1. Extreme cases: centres with 0 successes or 0 failures

For stratum k, let sk = n11k + n21k denote the number of successes and let fk = n12k + n22k denote
the number of failures. First, we study the e�ects on the analyses of strata that have either sk =0
or fk =0, such as centres 1 and 3 of Table V.
Consider �xed e�ects models relating to the odds ratio. Then, ML estimates exist only in the

extended sense that �̂k =−∞ when sk =0 and �̂k =∞ when fk =0. The likelihood approaches its
maximum in the limit as these estimates grow unboundedly in the appropriate direction and �̂ and
{�̂k} for strata with min(sk ; fk)¿0 take the �nite values the ML estimates assume after deleting
the o�ending strata from the data set. Although �̂k is in�nite when min(sk ; fk)= 0; in practice it
is common for software to be fooled by the very at log-likelihood and converge, reporting large
centre estimates. The reported standard errors for such strata are huge, since they are based on
inverting a matrix that summarizes the curvature of the log-likelihood at convergence.
In any case, for logit model (1), centres with sk =0 or fk =0 have no e�ect on �̂. Similarly,

the conditional likelihood approach to �tting model (1) ignores strata with sk =0 or fk =0; as
does the M–H estimate and its standard error. When one conditions on row and column totals,
the observed counts in the stratum are the only ones possible, and the distribution is degenerate;
for instance, conditionally, the count in the �rst cell equals the observed value with probability 1,
and the variance of the distribution of that count is 0. Similarly, the M–H test statistic [38] for
testing that the strati�ed treatment e�ect is null, which was originally derived for such conditional
distributions, is una�ected by such tables.
Next, consider the random e�ects approach. Since it borrows from the whole, one obtains a

�nite estimate of ak even when sk =0 or fk =0. Strata with sk =0 or fk =0 are relevant for
the random e�ects model (4) also in terms of estimating the variance �2 of the centre estimates.
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Deleting such a stratum usually has a decreasing e�ect on �̂, since the remaining strata show
less variability in their overall success rates. Certainly, one would want to utilize data from all
the centres if one were interested in estimating centre variability or individual centre e�ects {ak}.
Normally such tables have little e�ect on �̂ or inference about �, an exception being mentioned
below. Similar comments apply to random e�ects models for the relative risk or di�erence of
proportions.
For inference with the relative risk or the di�erence in proportions, we next study analyses

based on M–H estimators, for which e�ects of 0 column totals in strata are clear from the relevant
formulae. The relative risk estimator (8) is una�ected by strata with sk =0, but strata with fk =0
provide a shrinkage toward 1.0. This is sensible, since when the two sample proportions of success
fall within a small �¿0 of 0, the sample relative risk can be any non-negative value, but when
the two sample proportions are within � of 1, the sample relative risk must fall very close to 1.
Similarly, strata with sk =0 make no contribution to the estimated variance (10), and strata with
fk =0 contribute to the denominator alone, thus providing a shrinkage in the variance estimate.
For testing, strata with sk =0 make no contribution to the ratio of estimate to standard error, and
provide no information about whether this type of e�ect exists.
For the M–H estimator (9) of the di�erence of proportions, strata with sk =0 or fk =0 make no

contribution to the numerator but do contribute to the denominator. Thus, including such strata has
the e�ect of shrinking the estimated di�erence of proportions toward 0 compared to the estimate
that excludes them. This is expected, since such strata have a sample di�erence of proportions
of 0. There is a compensating shrinkage e�ect on the standard error, and the ratio of estimate to
standard error is una�ected by such strata. Thus, these strata also provide no information about
whether this type of e�ect exists, although they do contribute toward estimating the size of the
e�ect and hence provide evidence about whether interaction exists.

6.2. Analyses of Table V

Keeping in mind the highly tentative nature of any random e�ects modelling with such a small K ,
we summarize in Tables VI and VII various logit model analyses of Table V. The �rst row of
Table VI reports estimates of the log-odds ratio � and their standard errors, for the ML �xed
e�ects approach, the ML random e�ects approaches, and the M–H approach. Results are similar
for all approaches, with the estimated common log-odds ratio of 1.5 (odds ratio of about 4.5)
being about 2.2 standard errors.
The two centres with no successes can provide no information about the log-odds ratio treatment

e�ect � as estimated by the �xed e�ects model or the M–H method. Very similar results occur
with the random e�ects approach for the reduced data set deleting centres 1 and 3, as shown in
the second line of Table VI.
For the no interaction models, the �rst row of Table VII reports ML estimates of {�k} for the

�xed e�ects model (1) and approximate BLUP estimates of {ak} for the random e�ects model (4).
Because s1 = s3 = 0; �̂1 = �̂3 = − ∞ for model (1). Software may provide misleading indications
in such situations, and a danger sign is when standard errors are enormous compared to the esti-
mates, reecting the very at log-likelihood. The values in Table VII are those reported by PROC
GENMOD in SAS (Version 7). PROC LOGISTIC provides �̂1 =−15:0 (standard error= 312.8)
and �̂3 =−15:3 (standard error= 339.7) but warns that the ML estimates may not exist. The other
centre estimates are the same for both procedures and the same as one obtains by deleting centres
1 and 3 from the data set (see row 2 of Table VII).
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Table VI. Estimated treatment log-odds ratio (standard error in parentheses) for various
logit models with Table V.

Data Logit model (equation number)
Fixed, Random, Random Random Mantel–Haenszel

no interaction no interaction non-parametric, interaction
(1) (4) no interaction (6) (7)

Table V unadjusted 1.55 1.52 1.53 1.52 1.55
(0.70) (0.70) (0.69) (0.70) (0.71)

Delete centres 1,3 1.55 1.48 1.51 1.48 1.55
(0.70) (0.70) (0.69) (0.70) (0.71)

Combine centres 1–3 1.56 1.54 1.53 1.54 1.56
(0.70) (0.70) (0.69) (0.70) (0.70)

Add 0.000001 all cells 1.55 1.52 1.53 1.52 1.55
(0.70) (0.70) (0.69) (0.70) (0.71)

Add 0.05 all cells 1.48 1.45 1.46 1.45 1.48
(0.68) (0.67) (0.67) (0.67) (0.68)

Corresponding odds ratio estimates vary between e1:45 = 4:3 and e1:56 = 4:8.

As noted before, naive standard errors of estimates of random e�ects ignore the fact that the
variance of those random e�ects is itself estimated. (Moreover, one is naive to expect to esti-
mate well a variance component when K and n are as small as in the examples of this article!)
Booth and Hobert [42] proposed a method for calculating standard errors based on the condi-
tional mean squared error of prediction (CMSEP), given the data. This method incorporates a
positive correction for the variability of the parameter estimates as well as an estimate of the
bias incurred by using an estimate for the unknown conditional variance. Although this bias is
often larger than the variance correction and thus non-ignorable, it is computationally di�cult to
calculate. Morris [41] proposed an analytic correction which can work well for the logistic mixed
model [61]. Table VII reports the standard errors for the random e�ects centre estimates pro-
vided by NLMIXED, using the PREDICT option, which are based on a Laplace approximation to
the CMSEP.
An ML estimate �̂k =−∞ is not very appealing when one truly believes that �ik¿0. Because

of the normality assumption, the random e�ects estimate of ak also uses information from other
centres and is �nite. For centre 1, for instance, the estimate â1 =−1:07 provides an estimated
success probability of exp(−1:07)=[1 + exp(−1:07)=0:255 for placebo, even though that group
had no successes at that centre. The estimated standard deviation of the centre e�ects is �̂=1:8.
Although centres with min(sk ; fk)= 0 provide no information about the treatment e�ect, deleting
them from the analysis will tend to decrease �̂. In this case, �̂ decreases to 1.1.
The no interaction models, whether �xed e�ects or random e�ects, showed moderate evidence

of a treatment e�ect. The random e�ects model permitting interaction has identical results (see
Table VI), since the ML estimate of the standard deviation of the log-odds ratio is 0. This also
happens when deleting centres 1 and 3 or when combining centres 1–3.

6.3. Extreme cases: centres with one observation per treatment

Simpli�ed forms of the various estimates and standard errors occur for matched pairs data in which
each row of each stratum contains a single observation. This is an extreme form of sparseness
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Table VII. Estimated centre e�ects (standard error in parentheses) for no interaction models with Table V.

Data Fixed e�ects model (1) Random e�ects model (4)
�1 �2 �3 �4 �5 a1 a2 a3 a4 a5

Table V −28.0 −4.2 −27.9 −1.0 −2.0 −1.1 −0.5 −1.5 2.3 1.4
unadjusted (2:1× 105) (1.2) (1:9× 105) (0.7) (0.7) (1.4) (1.2) (1.4) (1.2) (1.2)

Delete −4.2 −1.0 −2.0 −1.2 1.1 0.2
centres 1,3 (1.2) (0.7) (0.7) (0.9) (0.8) (0.8)

Combine −4.9 −1.0 −2.0 −1.8 1.5 0.5
centres 1–3 (1.2) (0.7) (0.7) (1.1) (1.0) (1.0)

Add 0.000001 −16.6 −4.2 −16.8 −1.0 −2.0 −1.1 −0.5 −1.2 2.3 1.4
all cells (707.1) (1.2) (707.1) (0.7) (0.7) (1.4) (1.2) (1.4) (1.2) (1.2)

Add 0.05 −5.7 −4.1 −5.9 −0.9 −2.0 −0.9 −0.6 −1.0 2.1 1.2
all cells (3.2) (1.1) (3.2) (0.6) (0.6) (1.2) (1.0) (1.2) (1.1) (1.0)

Fixed e�ects estimates obtained using PROC GENMOD in SAS.

in which n=2K . An important application is in cross-over studies, in which stratum k provides
subject k’s response for each treatment.
Let a=

∑
k n11kn21k denote the number of pairs where both observations are successes, b=∑

k n11kn22k the number where the �rst is a success and the second is a failure, c=
∑

k n12kn21k
the number where the �rst is a failure and the second is a success, and d=

∑
k n12kn22k the

number where both are failures. Then, the M–H log-odds ratio estimate simpli�es to

�̂MH = log(b=c); v̂ar(�̂MH)= b
−1 + c−1

which is identical to the conditional ML estimate. Also, the M–H type of log relative risk estimate
is

�̂MH = log[(a+ b)=(a+ c)]; v̂ar(�̂MH)= (b+ c)=(a+ b)(a+ c)

and the M–H type of di�erence of proportions estimate is

�̂MH = (b− c)=K; v̂ar(�̂MH)= [(b+ c)− (b− c)2=K]=K2

where K = a+ b+ c + d.
For this degree of sparseness, it is inappropriate to use ordinary ML estimators of these param-

eters based on models such as (1), as such estimators are inconsistent. The random e�ects version
(4) is adequate, since the number of parameters in the marginal likelihood stays constant as K
increases. In fact, suppose the association between the two responses is non-negative, in the sense
that log(ad=bc)¿0; then, for any parametric random e�ects model that is consistent with the data,
the estimate of the log-odds ratio � is identical [62] to the M–H and conditional ML estimates,
namely log(b=c).

6.4. E�ects of adding constants or combining centres

When �nite ML estimates do not exist, one approach in �xed e�ects models for contingency table
analysis is to add a small positive constant to each cell (or to the empty cells), thus ensuring that
all resulting estimates are �nite. When that constant is small, however, the resulting value of �̂
for model (1) and its standard error are usually almost identical to what one obtains by ignoring
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strata for which sk =0 or fk =0. Table VI illustrates, showing the e�ect of adding 0.000001 to
each cell and adding one observation to the data set (1=20 to each cell) for the sparse data of
Table V. The treatment e�ects and goodness-of-�t are stable, as the addition of any such constant
less than 0.001 to each cell yields �̂=1:55 (ASE=0:70) and a G2 goodness-of-�t statistic equal
to 0.50.
Although this process also provides �nite centre estimates for strata with min(sk ; fk)= 0; the

estimates for these strata depend strongly on the constant chosen. Table VII illustrates, again
showing the e�ect for added constants of 0.000001 and 0.05. The ad hoc nature of this approach
is a severe disadvantage. Random e�ects and Bayesian approaches seem more suited to smoothing
e�ects of zeros, and do not require adding arbitrary constants. Thus, we do not advocate adding
constants in order to arti�cially include data from certain centres in the analysis.
An alternative strategy in multi-centre analyses combines centres of a similar type. Then, if each

resulting partial table has responses with both outcomes, the ordinary descriptions and inferences
use all the data. This, however, can a�ect somewhat the interpretations and conclusions made from
those inferences. An extreme form of combining centres results from adding together all K tables
and performing inference and description for that marginal X -by-Y 2× 2 table. Although apparently
sometimes done in practice, this can be dangerous, as Simpson’s paradox [60] illustrates.
It seems reasonable to combine two centres if the descriptive measure of interest is similar for

each and similar to what one gets by combining them. Su�cient conditions exist for when this
happens. For instance, suppose the relative risk or the di�erence of proportions is identical for two
centres. Then, the value of that measure takes the same value when the centres are combined [63]
if the sample size ratio n1+k =n2+k is the same for each centre. For the odds ratio, collapsibility
is more complex, su�cient conditions being the conditional independence of Z with either X
or Y for those two strata. These conditions have limited relevance here, however, since when
min(sk ; fk)= 0; there is no information about the size of the relative risk or odds ratio for that
centre. Thus, it seems dangerous to combine that centre with others unless there are good reasons
to believe that those centres are very similar and could be expected to share similar values of the
measure of interest. For the di�erence of proportions, it is unnecessary in any case to combine
a centre having min(sk ; fk)= 0 with other centres, since it makes a contribution as it is to the
summary di�erence of proportions (although, as noted above, it provides no information about the
signi�cance of that di�erence).
For Table V, perhaps centres 1 and 3 are similar to centre 2, since the success rate is also very

low for that centre. Table VI also shows the results of combining these three centres and re-�tting
the models to this table and the tables for the other two centres. Here, the e�ect is negligible.
In summary, with frequentist approaches there seems to be no loss of information regarding the
signi�cance of treatment e�ects by simply deleting centres having min(sk ; fk)= 0, although it is
useful to include them for random e�ects analyses designed to estimate centre variability.

6.5. Assumptions in models

For severely sparse data, e�ects of model misspeci�cation can be especially worrisome. Rarely
would it be possible to check assumptions about homogeneity of e�ects or about a form of
distribution for random e�ects. In estimating parameters in random e�ects models with sparse
data, one might be concerned about how much those estimates may depend on the assumption
for the random e�ects distribution. One way to check this assumption is to compare results to
those obtained with a distribution-free approach for the random e�ects distribution, [64; 65] which
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estimates that distribution using a �nite number of mass points and probabilities. This approach is
available with a GLIM macro [66]. Results for examples here are very similar to those assuming
a normal random e�ect. Table VI illustrates for the no interaction model applied to Table V,
providing results supplied by that GLIM macro.
At a minimum, it seems sensible to conduct some analyses designed to investigate sensitivity

to assumptions and the inuence of changes in the model and slight changes in the data. A model
sensitivity study checks whether conclusions about the treatment e�ect are similar for a variety of
plausible models. A case sensitivity analysis checks the e�ect on estimates and test statistics of
deleting or adding a single observation or changing a single observation from success to failure
or vice versa, checking this separately for each cell in the contingency table.
We illustrate the case sensitivity analysis for the no interaction random e�ects model with

Table V. Checking the inuence of each observation by deleting it from the data set, the estimated
mean log-odds ratios vary from 1.42 to 1.87 with standard error ranging from 0.69 to 0.77,
compared to the values of 1.52 and 0.696 for the observed data; the ratios of estimates to standard
errors range from 2.02 to 2.42, compared to the observed 1:519=0:696=2:18. The two smallest
estimates and ratios result from deleting a success for the active drug in centre 4 or 5. When
we instead add a single observation, the estimated mean log-odds ratios range from 1.16 to 1.61
with standard errors ranging from 0.63 to 0.70, while the ratios of estimates to standard errors
range from 1.84 to 2.36. The �ve smallest estimates and ratios result from adding a success in
the placebo group, in turn for each centre. After changing a single observation from success to
failure or vice versa, the estimated mean log-odds ratios vary from 1.15 to 1.90 with standard
errors ranging from 0.63 to 0.77; the ratios of estimates to standard errors range from 1.81 to
2.47. These results indicate the very tentative nature of any conclusions about the signi�cance of
the results in Table V.
As mentioned, it can be di�cult to estimate well the variance components or standard errors

of those components or the random e�ects. To check whether certain ones seem plausible, one
might use the jack-knife or else treat the �tted model as if it were the true one and conduct
a parametric bootstrap for independent binomials of the given row sizes satisfying that model
[59]. This may be useful also to provide alternative con�dence intervals. There is no guarantee
that bootstrap methods will work well for highly sparse data, but a dramatically di�erent result
can suggest potential problems with the standard error estimate and corresponding Wald interval
estimates.

6.6. Dependence of results on method of �tting

When using Gauss–Hermite quadrature to approximate the likelihood function in obtaining ML es-
timates for random e�ects models, the resulting quality of the approximations for the ML estimates
can depend strongly on the number of quadrature points used. This is especially true when the data
are sparse or the variance components are large. We recommend that the number of quadrature
points be increased until the change in parameter estimates and standard errors is negligible. In our
experience the standard errors and variance component estimates usually require a greater number
of quadrature points for convergence than the treatment parameter estimates.
The number of quadrature points can be greatly decreased by centring the quadrature nodes at

the mode of the function being integrated and scaling them by the curvature at the mode [24; 25].
Using this approach with the no interaction model for Table I, we needed only 9 quadrature points
to obtain convergence (to four decimal places) in the parameter estimates and about 13 for the
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standard errors, as opposed to about 200 quadrature points (about 270 for the standard errors)
using the standard Gauss–Hermite nodes and weights. With the centred nodes approach one must
take care when calculating predicted centre e�ects and interaction e�ects, since the functions being
approximated may not be unimodal.
By default, PROC NLMIXED in SAS selects the number of quadrature points. Starting with one

quadrature point, the log-likelihood is evaluated at the parameter starting values. The number of
quadrature points is then increased and the log-likelihood re-evaluated until the di�erence between
two successive evaluations is less than some user-controlled epsilon. That necessary number of
quadrature points at the initial values is then used in all successive cycles in determining the pa-
rameter values that maximize the likelihood function. In our experience this often leads to only �ve
or six points and can be inadequate for standard error calculations or predictions. Users can avoid
the default method by using the QPOINTS= option. We also recommend expressing the variance
components as products of standard deviations in the RANDOM statement of NLMIXED. Esti-
mation of the standard deviation often avoids convergence problems when the estimated variance
component is close to zero.

7. SUMMARY COMMENTS AND RECOMMENDATIONS

7.1. Similarities and di�erences in substantive results

For the examples in this paper, we reached similar conclusions about the treatment e�ect whether
we used �xed e�ects or random e�ects models. Our experience with a variety of examples indicates
that the �xed e�ects model and the random e�ects model assuming no interaction tend to provide
similar results about the common treatment e�ect. Those results are also similar to the ones for
the mean of the treatment e�ects for the random e�ects interaction model when the variance
component estimate for the treatment e�ects equals 0 or close to 0. The latter model may provide
a much wider con�dence interval for the average e�ect when that variance component estimate is
substantial. To illustrate, we alter Table I slightly, changing three of the failures to successes for
drug in centre 3 and three of the successes to failures for drug in centre 8. Then the ML estimates
are �̂=0:759 with SE=0:305 for �xed e�ects model (1) and �̂=0:722 with SE=0:299 for the
random e�ects model (4) without interaction, but �̂=0:767 with SE=0:623 for the random e�ects
model (6) permitting interaction. For the latter model, �̂b=1:37, compared to 0.15 for the actual
data.
By contrast to the usual similarity of estimates of overall treatment e�ects with �xed e�ects

and random e�ects models, the two model types can provide quite di�erent estimates of individual
centre or treatment e�ects. For instance, when all observations in a centre fall in the same outcome
category, the random e�ects models smooth the centre e�ects considerably from the in�nite values
obtained with the �xed e�ects models.
An interesting question is to study the types of sparse data con�gurations or highly unbalanced

data sets that can result in the two types of analyses giving substantively di�erent treatment
estimates or inferences about the treatment e�ect. As an extreme example (mentioned to us by Dr
C. McCulloch in a personal communication), suppose that some strata have observations only for
treatment 1 and the other strata have observations only for treatment 2. The �xed e�ects approach
has insu�cient information to estimate the treatment e�ect, since there are K binomial observations
but K + 1 parameters for the no interaction model. By contrast, with the random e�ects approach
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data of this form provide information about the treatment e�ect and about a mean and standard
deviation of the random e�ects distribution, at least if one can regard the strata of each of these
two types (having observations with only treatment 1 or having observations with only treatment 2)
as a random sample from that distribution.

7.2. Strategies for choice of model and analysis

In selecting a method, a key determinant is the intended scope of inferences. If the strata truly are
a sample of all possible strata and one would like to make inferences that apply more generally
than to only the strata sampled, then the random e�ects approach is more natural. Data from
multi-centre clinical trials and meta analyses are usually of that type, although the samples are
usually not random. However, many share the view quoted earlier of Grizzle [16] that a random
e�ects approach still better reects all the actual sources of variability. If the strata sampled are
the only ones of interest, such as when the strata are levels of control variables such as gender
and race, the �xed e�ects approach is natural. Even when the strata are not a sample, however,
the random e�ects estimators can be bene�cial because of their smoothing e�ects. For instance,
when there is signi�cant interaction, the random e�ects estimates of stratum-speci�c log-odds ratios
might be preferred to the separate sample values, especially when some of those sample values
are in�nite. See Senn [14] for a more sceptical view noting potential problems with using random
e�ects approaches.
The choice of a �xed e�ects or random e�ects analysis can be a complex one having many

considerations. [14; 16]. Among statistical considerations, for random e�ects modelling one should
preferably have many more centres than the 8 in Table I and the 5 in Table V, yet the combining
of information that occurs with random e�ects modelling is often very appealing. Among non-
statistical considerations, a ‘centre’ is often quite arbitrary and not as well de�ned as a ‘subject’,
yet we develop treatments not just for the subjects who attended the centres used in the study [14].
A referee has pointed out that one could consider ‘�xed’ and ‘random’ as but two labels for a con-
tinuum of sampling models that includes, for instance, systematic cases that are more representative
than a random sample in certain senses and illustrative cases that are less so. Further development
of such a framework of types of e�ects would be an interesting topic for further research.
Next, whatever one’s choice of �xed or random e�ects model, one must decide whether to

include interaction terms in the model. With many strata or highly sparse data, the power of tests
of the hypothesis of no interaction may be weak. The safest approach is then to use the interaction
model; otherwise, if one uses the simpler model but interaction truly exists, the standard error of
the estimated treatment e�ect may be unrealistically low. Fixed e�ects and random e�ects no
interaction models will tend to report smaller standard errors for the treatment e�ect than the
interaction model, since the latter model permits an extra component of variance. Even when
�̂b=0, the likelihood function often reveals that values of �b quite far from 0 are also plausible;
thus, it is safest to use the interaction model. One may pay a penalty for doing so, having an
increased standard error, but this simply reects scepticism about the homogeneity model and the
desire for inferences to apply more generally than for only the centres sampled.
With the random e�ects approach, one must also consider the validity of a normal assumption for

the random e�ects. When the primary interest is in the treatment e�ect, the choice of distribution
for the random e�ect should not be crucial [67], as a wide variety of mixing distributions lead to
similar marginal distributions (averaged over the random e�ects). For model (4), for instance, if
the normal distribution can induce an intracluster correlation approximately equal to the intracluster
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correlation for the actual mixing distribution, then there is little bias in estimation of � or in the
standard error estimates [67]. When the actual distribution is highly skewed, some bias [65; 67]
may occur in estimating �.
The above remarks refer to the treatment e�ect. When estimation of centre e�ects are the

focus, it is of interest to study the degree to which the estimates could depend on the choice
of distribution. For �xed K , asymptotically this does not seem to be a problem. For instance,
when the additive model form (1) holds, for any �nite set of centre e�ects, as {nik} increase the
random e�ect estimators of treatment and centre parameters behave like the �xed e�ect estimators;
in particular, both sets converge to the true values. In practice this manifests itself by the random
e�ects estimates being very similar to the �xed e�ects estimates when the stratum-speci�c sample
sizes are large.
An interesting open question is to study the e�ect of misspeci�cation of the random e�ects

distribution for the sparse asymptotic framework in which K grows with n. It is then too much
to ask for consistency of centre estimates, but does one obtain consistency of estimation of the
treatment e�ect and the variance components? One way to check the e�ect of the normality
assumption is to compare results to those obtained with a non-parametric approach [64]. An
advantage of the normal choice, other than convenience, is that it extends naturally to multivariate
random e�ects that may have some correlation structure.
We have seen that centres with 0 successes or 0 failures can be disregarded in terms of deciding

whether a treatment e�ect exists. They are needed, however, for estimating the variance component
of centre e�ects in the random e�ects model, and for estimating the size of the e�ect in �xed and
random e�ects models for the di�erence of proportions.

7.3. Extensions and alternative methods

Our emphasis has been on binary data with two groups, but the models and issues discussed
generalize to multinomial data and several groups. For instance, for an ordinal response, one can
use a proportional odds model with centre and treatment e�ects, with the centre e�ects being
treated either as �xed or random. Recent work has focused on ways of �tting such models with
random e�ects [68; 69], and one can use NLMIXED to �t the proportional odds model and related
models (such as with probit link) based on the Gauss–Hermite quadrature approximation of the
likelihood function.
Finally, this paper has focused on frequentist approaches. Alternative approaches include Bayes

and empirical Bayes methods [4; 6; 11; 12; 70; 71]. The random e�ects model has much in common
with empirical Bayes, in that it assumes a distribution for a set of parameters and uses the data
to estimate parameters of that distribution.
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