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Comment: Randomized Confidence
Intervals and the Mid-P Approach
Alan Agresti and Anna Gottard

We enjoyed reading the interesting, thought-provok-
ing article by Geyer and Meeden. In our comments
we will try to place their work in perspective rela-
tive to the original proposals for exact and random-
ized confidence intervals for the binomial parameter.
We propose a fuzzy version of the original binomial
randomized confidence interval, due to Stevens (1950).
Our approach motivates an existing nonrandomized
confidence interval based on inverting a test using the
mid-P value. The mid-P confidence interval provides
a sensible compromise that mitigates the effects of con-
servatism of exact methods, yet provides results that
are more easily understandable to the scientist.

1. HISTORICAL PERSPECTIVE

Clopper and Pearson (1934) proposed the following
100(1 − α)% confidence interval for a binomial para-
meterθ : The bounds[θL, θu] are the solutions to the
equations
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(One takesθL = 0 when x = 0 and θU = 1 when
x = n.) This confidence interval is based on inverting
two one-sided binomial tests. Because of discreteness,
the method is conservative; the actual confidence level
is bounded below by 1− α (Neyman, 1935).

To eliminate the conservativeness, Stevens (1950)
suggested instead solving the binomial-probability
equations

PrθU
(X < x) + U × PrθU

(X = x) = α/2
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and

PrθL
(X > x) + (1− U) × PrθL

(X = x) = α/2,

whereU is a Uniform(0,1) random variable. This con-
fidence interval is based on inverting tests for which (as
in the case of continuous random variables) the one-
sidedP -values have a uniform null distribution and
sum to 1, unlike the ordinary one-sidedP -values used
in the Clopper–Pearson confidence interval. We will re-
fer to this as theStevens randomized confidence inter-
val. Anscombe (1948) made the analogous one-sided
proposal of inverting a randomized one-sided binomial
test so as to obtain an upper or lower randomized con-
fidence bound. Blyth and Hutchinson (1960) provided
tables for implementing a slightly different random-
ized confidence interval (proposed by M. W. Eudey in
a 1949 technical report at the University of California,
Berkeley) that has the property of being Neyman short-
est unbiased.

These days statisticians regard randomized inference
as a tool for the mathematical convenience of achiev-
ing exactly the desired size or confidence level with
discrete data, but they do not consider actually imple-
menting it in practice. However, this method was orig-
inally thought to have considerable promise.

For example, Pearson (1950) suggested that statis-
ticians may come to accept randomization after per-
forming an experiment just as they had gradually come
to accept randomization for the experiment itself. He
predicted that randomized confidence intervals “will
not meet with strong objection.” Stevens (1950) stated,
“We suppose that most people will find repugnant the
idea of adding yet another random element to a result
which is already subject to the errors of random sam-
pling. But what one is really doing is to eliminate one
uncertainty by introducing a new one. The uncertainty
which is eliminated is that of the true probability that
the parameter lies within the calculated interval. It is
because this uncertainty is eliminated that we no longer
have to keep ‘on the safe side,’ and can therefore re-
duce the width of the interval.” He argued that “it is the
statistician’s duty to be wrong the stated proportion of
times, and failure to reach this proportion is equivalent
to using an inefficient in place of an efficient method
of estimation.” He noted, though, the apparent paradox
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that two people could analyze the same data, yet a 90%
confidence interval for one person could be contained
in an 89% confidence interval for the other person.

2. FUZZY CONFIDENCE INTERVALS BASED ON
THE ANSCOMBE AND STEVENS RANDOMIZED

CONFIDENCE INTERVALS

Let us consider first the one-sided lower confidence
bound for Anscombe’s (1948) method. A 100(1−α)%
randomized lower confidence bound is obtained by
solving the equation

PrθL
(X > x) + U × PrθL

(X = x) = α/2.

Without actually implementing the randomization, this
would correspond to a UMP testing procedure and to
the Geyer–Meeden fuzzy confidence interval (in the
form of a bound). Solving this equation withU = 1
yields an interval(θL,1) that is the support of the
Geyer–Meeden fuzzy confidence interval. Solved with
U = 0, this equation yields an interval(θL,1) that is
the core of the Geyer–Meeden fuzzy confidence in-
terval. Solving withU = u provides theu-cut of the
fuzzy interval recommended by Geyer and Meeden in
Section 2.1 for those who prefer a realized randomized
confidence interval.

Suppose we replaceU in the Anscombe randomized
confidence bound by its expected value, 1/2. This cor-
responds to inverting the result of the test using the
mid-P value, which is the null probability of more ex-
treme results plus half the probability of the observed
result (Lancaster, 1961). In the one-sided case, it pro-
vides a confidence bound that is a compromise between
the support and the core of the fuzzy confidence bound.
It is theu-cut withu = 1/2.

In the two-sided case (i.e., confidence intervals
rather than confidence bounds), the Stevens (1950)
randomized confidence interval without actually per-
forming the randomization is the basis of a fuzzy
confidence interval that we propose as an alternative
to the Geyer–Meeden fuzzy confidence interval. As
U increases from 0 to 1, the lower and upper end-
points of the Stevens randomized confidence inter-
val are monotonically increasing. SubstitutingU = 0
in Stevens equations gives the bounds for a realized
Stevens interval, having as lower bound the Clopper–
Pearson lower bound. SubstitutingU = 1 gives the
bounds for a realized Stevens interval having as up-
per bound the Clopper–Pearson upper bound. Thus,
the support of the proposed fuzzy confidence interval
is the Clopper–Pearson interval. The core of the fuzzy

confidence interval is the set ofθ values that fall in
every one of the possible realized Stevens confidence
intervals. This core goes from the lower bound of the
realized Stevens confidence interval withU = 1 to the
upper bound of the realized Stevens confidence interval
with U = 0.

The figure for this proposed fuzzy confidence inter-
val is easily constructed. This is simplest to describe
when 1≤ x ≤ n − 1, because the endpoints are then
strictly monotone inU . Consider an arbitrary value
U = u for the uniform random variable. The value that
is the lower bound of the randomized confidence inter-
val with U = u is contained only in all the randomized
confidence intervals withU less than or equal tou.
So, for the givenx, the probability 1− φ(x,α, θ) of
containing that value isu. Thus, at the valueθ that is
the lower bound of the randomized confidence inter-
val with U = u, the height of the curve to display the
fuzzy confidence interval isu. Likewise, the value that
is the upper bound of the randomized confidence inter-
val with U = u is contained only in all the randomized
confidence intervals withU greater than or equal tou.
So, for the givenx, the probability 1− φ(x,α, θ) of
containing that value is 1− u. Thus, at the valueθ that
is the upper bound of the randomized confidence inter-
val with U = u, the height of the curve to display the
fuzzy confidence interval is 1− u.

This method of forming a fuzzy confidence interval
by inverting two single-tailed randomized tests applies
to interval estimation with any of the popular discrete
one-parameter exponential family distributions. Unlike
the Geyer–Meeden fuzzy confidence interval, this type
of fuzzy confidence interval is not UMPU. There is no
reason, however, that a statistical procedure needs to
be unbiased to have good practical performance. Us-
ing the Geyer–Meeden approach to specify the real-
ized confidence interval by theu-cut and thus putting
the parameter values in the confidence interval that are
“least contradictory” seems analogous to the Sterne
(1954) approach for forming nonrandomized intervals
by inverting tests in which acceptance regions are
formed using the most likely outcomes. By contrast,
the approach we have presented seems analogous to the
tail method of forming a confidence interval, inverting
two one-sided tests with equal tail probabilities.

Let us consider the example from Geyer and Meeden
of a binomial distribution withn = 10. Table 1 shows
the support and core of the 95% fuzzy confidence in-
tervals for the possiblex outcomes (analogous results
follow for x between 6 and 10, by symmetry). We were
surprised that the support of the Geyer–Meeden fuzzy
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TABLE 1
Core and support of Geyer–Meeden and proposed fuzzy confidence intervals for binomial distribution with n = 10

Observed outcome x

Fuzzy conf. int. 0 1 2 3 4 5

Core
Geyer–Meeden (0.000, 0.000) (0.006, 0.303) (0.041, 0.443) (0.098, 0.558) (0.169, 0.660) (0.251, 0.749)
Proposed (0.000, 0.000) (0.025, 0.308) (0.067, 0.445) (0.122, 0.556) (0.187, 0.652) (0.262, 0.738)

Support
Geyer–Meeden (0.000, 0.303) (0.000, 0.443) (0.006, 0.558) (0.041, 0.660) (0.098, 0.749) (0.169, 0.831)
Proposed (0.000, 0.308) (0.003, 0.445) (0.025, 0.556) (0.067, 0.652) (0.122, 0.738) (0.187, 0.813)

confidence interval often contains the Clopper–Pearson
confidence interval, which is the support of our pro-
posed fuzzy confidence interval. In our experience this
is typical whenx is near the middle of the range. The
Clopper–Pearson confidence interval is known to be
notoriously conservative. We do not find it desirable
to use a fuzzy confidence interval that has support even
wider than the Clopper–Pearson interval to satisfy the
goal of achieving the nominal coverage probability ex-
actly.

Figure 1 shows our proposed fuzzy confidence inter-
val for the casex = 4, comparing it with the Geyer–

FIG. 1. Fuzzy confidence intervals for binomial distribution with
sample size n = 10, confidence level 1 − α = 0.95 and observed
x = 4.

Meeden fuzzy confidence interval plotted in Figure 2
of their article. In various examples we considered, the
proposed fuzzy confidence interval gave more precise
results whenx is near the middle of the range, and the
Geyer–Meeden fuzzy confidence interval did better for
observations at the boundary values. This is similar to
what Blyth and Hutchinson (1960) reported in compar-
ing the Stevens randomized confidence interval to the
one they tabulated having the Neyman shortest unbi-
ased property.

3. THE MID-P CONFIDENCE INTERVAL

With U = 1/2, the Stevens randomized confidence
interval reduces to the mid-P confidence interval. For
n = 10 with x = 4, this interval is (0.142, 0.709). By
comparison, the 0.5-cut for the Geyer–Meeden fuzzy
confidence interval is (0.120, 0.716).

The mid-P confidence interval has lower endpoint
of 0 whenx = 0 and upper endpoint of 1 whenx = n.
This is not necessarily the case for randomized confi-
dence intervals. For example, for the Stevens method,
when x = 0 the lower bound exceeds 0 whenU >

1 − α/2 and whenx = n the upper bound is less
than 1 whenU < α/2. This apparently relates to the
remark in Section 3.2 of Geyer and Meeden about
(1 − φ(x,α, θ)) converging to 1− α at one of the
boundaries ofθ values for extreme values ofx. To us,
this is an unappealing property of randomized confi-
dence intervals and fuzzy confidence intervals.

Inference based on the mid-P value is a useful,
general-purpose method for discrete data. It applies di-
rectly to interval estimation with any of the common
discrete one-parameter distributions. The mid-P con-
fidence interval does sacrifice the guarantee of hav-
ing coverage probability equal to exactly 1− α or at
least 1− α. However, results in Vollset (1993), Agresti
and Coull (1998), Newcombe (1998) and Brown, Cai
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and DasGupta (2001) suggest that for practical pur-
poses it performs quite well for interval estimation of
a binomial proportion. It is less conservative than the
Clopper–Pearson interval, but it still usually has ac-
tual coverage probability greater than 1− α; when it is
less, it rarely seems to be enough less to be of practical
importance. Brown, Cai and DasGupta (2001) showed
that it approximates closely an interval obtained with
a Bayesian approach using the Jeffreys prior distribu-
tion [beta with parameters 0.5 and 0.5, but their for-
mula (17) for the mid-P confidence interval in terms
of beta quantiles is incorrect].

For significance testing in discrete problems, many
statisticians prefer the mid-P value to the ordinary
P -value. Under the null hypothesis, the ordinary
P -value is stochastically larger than a uniform ran-
dom variable. By contrast, the mid-P value has null
expected value equal to 1/2. For the ordinaryP -value,
the sum of the right-tail and left-tailP -values is 1+
Prθ0(x); for the mid-P value, this sum is 1. Ordinary
P -values obtained with higher order asymptotic meth-
ods without continuity corrections for discreteness
yield performance similar to that of the mid-P value
(Pierce and Peters, 1992; Strawderman and Wells,
1998). Hwang and Yang (2001) presented an optimal-
ity theory for mid-P values in 2×2 contingency tables,
showing how thisP -value is the expected value of a
P -value resulting from a decision-theoretic approach.
See also Routledge (1994) for views that promote use
of the mid-P value.

4. WHY MID-P AND NOT FUZZY
CONFIDENCE INTERVALS?

Geyer and Meeden tell us that statisticians and sci-
entists should stop after finding the fuzzy confidence
interval and report it. We are skeptical about being able
to convince scientists to adopt fuzzy confidence inter-
vals. However, it does seem to us that scientists could
be convinced of the superiority of a confidence inter-
val based on the mid-P value compared to the ordi-
nary conservative confidence interval. Why? Because
of properties such as a shorter interval and correspon-
dence with a test having null expectedP -value equal
to 1/2 and one-tailedP -values that sum to 1. Also,
compared to randomized and fuzzy confidence inter-
vals, the mid-P interval does not have the unappealing
behavior mentioned in the previous section of not con-
taining the smallest (largest)θ values whenx takes its
smallest (largest) value.

With many scientists, of course, it can be difficult
to wean them away from merely reporting aP -value,

and to report instead estimates of parameters and con-
fidence intervals. We do not see much hope of getting
them to present anything more complex than an ordi-
nary confidence interval. If we want to progress beyond
that, perhaps we as statisticians should be spending
more time educating scientists about the likelihood
function and supplying software with which they can
look at the entire likelihood function (or profile likeli-
hood) to learn more about plausible values of relevant
parameters.

Geyer and Meeden also state that the fuzzy confi-
dence interval could be taught in elementary statistics
courses. Much as we enjoyed reading this paper, we
cannot imagine teaching this concept in Statistics 101
at the typical American or Italian university. For that
matter, we would not even try to teach the mid-P confi-
dence interval in such a course. The student has enough
difficulty understanding theP -value concept, and it
is simpler to avoid the issue of discreteness in such
a course by concentrating on large-sample approxi-
mations. One reason Agresti and Coull (1998) sug-
gested their adjusted Wald confidence interval based
on adding two outcomes of each type was because this
was something simple enough to handle in an elemen-
tary course. It attacked a discrete problem by adapting
a continuous large-sample solution, the ordinary Wald
interval taught in such courses, in such a way that it
provided much better performance.

We do not intend these comments to detract from
a very interesting and provocative paper. The fuzzy
confidence interval is an intriguing way to summa-
rize results, and this paper makes an important con-
tribution toward helping statisticians understand the
difficulties in having methods for discrete variables
match the same characteristics as corresponding meth-
ods for continuous variables. However, just as Stevens
and Pearson were overly optimistic in believing there
was a good future for the randomized test and confi-
dence interval, we believe that Geyer and Meeden may
be overly optimistic in their hopes for the adoption of
fuzzy inferences in basic teaching and application of
statistics.
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