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‘Exact’ methods for categorical data are exact in terms of using probability distributions that do not
depend on unknown parameters. However, they are conservative inferentially. The actual error prob-
abilities for tests and con�dence intervals are bounded above by the nominal level. This article examines the
conservatism for interval estimation and describes ways of reducing it. We illustrate for con�dence intervals
for several basic parameters, including the binomial parameter, the difference between two binomial
parameters for independent samples, and the odds ratio and relative risk. Less conservative behavior results
from devices such as (1) inverting tests using statistics that are ‘less discrete’, (2) inverting a single two-sided
test rather than two separate one-sided tests each having size at least half the nominal level, (3) using
unconditiona l rather than conditional methods (where appropriate) and (4) inverting tests using alternative
p-values. The article concludes with recommendations for selecting an interval in three situations—when
one needs to guarantee a lower bound on a coverage probability, when it is suf�cient to have actual
coverage probability near the nominal level, and when teaching in a classroom or consulting environment.

1 Introduction: Discreteness and conservatism

Recent years have seen considerable development and extensions of ‘exact’ small-
sample methods for contingency tables. This methodology is useful when one is
unwilling to trust the uncertain performance of an inferential method based on a
large-sample approximation. See Mehta1 and Agresti2 for recent reviews, and StatXact3

for software having the greatest scope for small-sample inference in discrete problems.
The word ‘exact’ in quotes in the article title and the title of this section refers to

methods that use distributions determined exactly rather than as approximations; that
is, those distributions do not depend on unknown parameters. However, they are not
exact in the sense that inferences based on them have error probabilities exactly equal to
the nominal values. Rather, the nominal values are upper bounds for the true error
probabilities.

We illustrate with a simple example. For a binomial random variable X with n ˆ 5
trials and parameter p, consider a test of H0 : p ˆ 0:5 against Ha: p 6ˆ 0:5. Under H0 , the
exact distribution of X is binomial with n ˆ 5 and parameter 0.5. Now, suppose the
outcome is x ˆ 5, with a sample proportion p̂p ˆ x=n ˆ 1:0, the maximum likelihood
(ML) estimate of p. With ‘exact’ inference the p-value is the binomial two-tailed
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probability of 0 or 5 outcomes in 5 trials, which is 2…1=2†5 ˆ 0:0625. Now let us
consider a scientist who believes in the sacredness of a 0.05 signi�cance level, rejecting
H0 only if the p-value of the test is no greater than 0.05. Using that nominal signi�cance
level, the scientist cannot reject H0 . However, the actual size (probability of type I error)
of the test is not 0.05. Rather, the probability of falsely rejecting H0 is 0, since when
n ˆ 5 no possible x provides a p-value below 0.05.

For a large-sample normal approximate test, a test statistic is

z ˆ …p̂p ¡ p0†=
���������������������������
p0…1 ¡ p0†=n

p
ˆ …1:0 ¡ 0:5†=

����������������������
0:5…0:5†=5

p
ˆ 2:24;

which has a two-sided p-value from the standard normal distribution of 0.025. Thus,
the test rejects H0 at the 0.05 level. The p-value for the z test is less than 0.05 only when
x ˆ 0 or 5; thus, its actual probability of type I error is the binomial probability of these
outcomes when p ˆ 0:5, which is 0.0625. Generally, the ‘exact’ binomial test has the
nominal size as an upper bound for the actual size. The large-sample normal test may
have actual size below or above the nominal level. In some cases that size may be closer
than the size of the exact test to the nominal level. However, with large-sample
approximation the potential also exists of having actual size much above the nominal
level, and whether this may happen is more dif�cult to predict with more complex
problems with nuisance parameters. Thus, such approximations are sometimes unac-
ceptable in practice.

Con�dence intervals correspond to inverting a family of tests. For instance, a 95%
con�dence interval for a parameter consists of the set of values not rejected at the 0.05
signi�cance level in a corresponding test. Inverting a family of tests that has actual size
no greater than 0.05 for each possible parameter value results in a con�dence interval
having coverage probability at least equal to 0.95. Thus, conservatism of ‘exact’ tests
propagates to ‘exact’ con�dence intervals, and possibly poor behavior of large-sample
tests propagates to large-sample con�dence intervals.

For instance, with the best known ‘exact’ method for interval estimation of a
binomial parameter (the ‘Clopper–Pearson’ method), the 95% con�dence interval
when x ˆ 5 in n ˆ 5 trials is (0.478, 1.000). We will see this means that p0 must be
below 0.478 in order for the binomial right-tail probability in testing H0 : p ˆ p0 against
Ha: p > p0 to fall below 0.025. In fact, when n ˆ 5 this ‘exact’ 95% con�dence interval
contains 0.5 for every value of x. Thus, the actual coverage probability of this ‘exact’
interval when p ˆ 0:5 is 1.0, not 0.95. By contrast, inverting the large-sample normal
approximate test described above (but with H0 : p ˆ p0 rather than H0 : p ˆ 0:5) yields
an interval having coverage probability 0.9375 when p ˆ 0:5, as the interval contains
0.5 when x ˆ 0 or x ˆ 5.

Conservatism is mainly problematic with small samples. As n increases with
individual probabilities approaching 0, actual error probabilities approach nominal
levels. The focus of this article is studying ways to reduce the conservatism in ‘exact’
small-sample interval estimation for some important parameters in categorical data
analysis. Section 2 summarizes some remedies for reducing the conservative effects of
discreteness. The remainder of the article shows particular cases. Section 3 presents
con�dence intervals for a binomial proportion. Section 4 presents con�dence intervals
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for the difference between two binomial proportions with independent samples. Section
5 discusses con�dence intervals for the odds ratio in 2 £ 2 tables. Section 6 brie�y
discusses other cases, including the relative risk. Section 7 summarizes and makes
recommendations. We will see that with small samples, substantial improvement can
result from reducing the conservatism of ‘exact’ con�dence intervals.

2 The tail method, and remedies for reducing its conservatism

‘Exact’ inference requires the actual error probability to be no greater than the nominal
level, which we denote by a. For a test, the actual size is no greater than a. For a
con�dence interval, the actual coverage probability is at least 1 ¡ a for all possible
values of y. The usual approach to ‘exact’ interval estimation inverts a family of ‘exact’
tests having size at most a.

Let T be a discrete test statistic with probability mass function f …t; y† and cumulative
distribution function F…t; y† indexed by a parameter y. For an ‘exact’ test, for each value
y0 of y let A…y0† denote the acceptance region for testing H0 : y ˆ y0 . This is the set of
values t of T for which the p-value exceeds a. Then, for each t, let C…t† ˆ fy0: t 2 A…y0†g.
The set of fC…t†g for various t are the con�dence regions with the desired property. In
other words, having acceptance regions such that

Py0 ‰T 2 A…y0†Š ¶ 1 ¡ a

for all y0 guarantees that the con�dence level for fC…t†g is at least 1 ¡ a. For a typical y0 ,
one cannot form A…y0† to achieve probability of type I error exactly equal to a, because
of discreteness. Hence, such con�dence intervals are conservative. The actual coverage
probability of C…T† varies for different values of y but is bounded below by 1 ¡ a
(Neyman4) unless one makes an arti�cial transformation of T to a continuous variable
using supplementary randomization.5

A common way to construct an ‘exact’ interval inverts two separate one-sided tests
that each have size at most a=2. For test statistic T for H0 : y ˆ y0 , let t0 denote the
observed value. Suppose relatively large values of T provide evidence in favor of
Ha: y > y0 and relatively small values provide evidence in favor of Ha: y < y0 . If F…t; y†
is a strictly decreasing function of y for each t, the con�dence interval …yL; yU† is de�ned
by solutions to the equations

P…T µ to; yU† ˆ a=2; P…T ¶ to; yL† ˆ a=2: …1†

This method of forming a con�dence interval is often called the tail method. When T is
continuous, method (1) yields coverage probability 1 ¡ a at all y, but when T is discrete
1 ¡ a is a lower bound. In technical terms, the bound results from the distribution of
F…T; y† being stochastically larger than uniform when T is discrete (Casella and Berger,6

pp. 77, 434).
Inverting a family of tests corresponds to forming the con�dence region from the set

of y0 for which the test’s p-value exceeds a. The tail method (1) requires the stronger
condition that the probability be no greater than a=2 that T falls below A…y0† and no
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greater than a=2 that T falls above A…y0†. The interval for this method is the set of y0 for
which each one-sided p-value exceeds a=2. Equivalently, it corresponds to forming the
con�dence region from the set of y0 for which a single p-value de�ned as
2 £ min‰Py0 …T ¶ to†, Pyo …T µ to†Š (but with p ˆ 1:0 if this doubling exceeds 1.0)
exceeds a.

One disadvantage of the tail method is that for suf�ciently small and suf�ciently large
y, the lower bound on the coverage probability is actually 1 ¡ a=2 rather than 1 ¡ a.
For suf�ciently small y, for instance, the interval can never exclude y by falling below it.

Alternatives to the tail method exist for constructing con�dence intervals that are
better—the intervals tend to be shorter and coverage probabilities tend to be closer to
the nominal level. We now summarize a few of these.

2.1 Con¢dence intervals based on two-sided tests
One approach to improving interval estimation of y inverts a single two-sided test

instead of two equal-tail one-sided tests. For instance, a possible two-sided p-value is
min‰Py0 …T ¶ to†, Py0 …T µ to†] plus an attainable probability in the other tail that is as
close as possible to, but no greater than, that one-tailed probability.7 This p-value is no
greater than that for the tail method. Hence the con�dence intervals based on inverting
such a test necessarily are contained in con�dence intervals obtained with the tail
method.

Another two-sided approach forms the acceptance region A…y0† by entering the test
statistic values t in A…y0† in order of their null probabilities, starting with the highest,
stopping when the total probability is at least 1 ¡ a; that is, A…y0† contains the smallest
possible number of most likely outcomes (under y ˆ y0 ). When inverted to form
con�dence intervals, this approach satis�es the optimality criterion of minimizing
total length.8 A slight complication is the lack of a unique way of forming A…y0†. In
its crudest partitioning of the sample space it corresponds to testing using the p-value

Py0 ‰f …T; y0† µ f …to; y0†Š; …2†

the sum of null probabilities that are no greater than the probability of the observed
result. The con�dence interval is the set of y0 for which

Py0 ‰f …T; y0† µ f …to; y0†Š > a:

In a related approach, Blaker7 de�ned g…t; y† ˆ min‰Py…T ¶ t†, Py…T µ t†Š and suggested
forming the con�dence interval as the set of y0 for which

Py0 ‰g…T; y0† µ g…to; y0†Š > a: …3†

This corresponds to a test based on the p-value mentioned above that equals the
minimum one-tail probability plus an attainable probability in the other tail that is as
close as possible to, but not greater than, that one-tail probability. Blaker showed that,
although such intervals may not have length optimality, they necessarily are contained
within intervals formed using the tail method. These intervals and the ones based on
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length optimality satisfy a nestedness property, in which an interval with larger nominal
con�dence level necessarily contains one with a smaller nominal level.

An alternative way to invert a two-sided test orders points for the acceptance region
and forms p-values according to a statistic that describes the distance of the observed
data from H0 . one could use a statistic T based on a standard criterion, such as the
likelihood-ratio statistic, the Wald statistic (based on dividing the ML estimate by its
standard error) or the score statistic (based on dividing the derivative of the log-
likelihood at y0 by its standard error). These are the three statistics commonly used for
large-sample inference.

These various two-sided approaches do not have the tail method disadvantage of a
lower bound of 1 ¡ a=2 for the coverage probability over part of the parameter space.
However, anomalies can occur. For instance, a con�dence region based on these two-
sided p-values is not necessarily an interval, because the endpoints of the acceptance
region need not be monotone in y0 . See Casella and Berger6 (p. 431) and Santner and
Duffy9 (p. 37) for discussion of this for the binomial parameter. Unfortunately, no
single method for constructing con�dence regions with discrete distributions can have
optimality simultaneously in the criteria of length, necessarily being an interval, and
nestedness.

In some studies a disadvantage of inverting a single two-sided test is non-equivalence
with results of one-sided tests, such as tests for whether a new treatment is better than a
standard one. For such studies one can argue in favor of simply calculating a one-sided
con�dence bound instead of a con�dence interval.

2.2 Con¢dence intervals based on less discrete statistics
In constructing a test or a con�dence interval based on a test, the test statistic should

not be any more discrete than necessary. For instance, consider the binomial parameter
p. In testing H0 : p ˆ p0 , one possible criterion for summarizing evidence about H0 is p̂p.
However, this statistic is severely discrete for small samples. It is better to base tests and
subsequent con�dence intervals on a standardization, such as by dividing it by its null
standard error, or the relative likelihood values. Then, in testing H0 : p1 ˆ 0:4, for
instance, p̂p ˆ 0:5 gives less evidence than p̂p ˆ 0:3 against H0 .

2.3 Con¢dence intervals based on alternative -values
It is sometimes possible to reduce conservativeness by using a less discrete form of p-

value. For instance, Cohen and Sackrowitz10 and Kim and Agresti11 based p-values on
a �ner partition of the sample space than provided by a test statistic T alone, to generate
a less discrete sampling distribution for the p-value. A simple way to do this supple-
ments T by the probabilities of the various samples for which T equals the observed
value to. Instead of including the probabilities of all relevant samples having T ˆ to in
the p-value, one includes only probabilities of those samples that are no more likely to
occur than the observed one. This modi�ed p-value is legitimate, since it satis�es the
usual de�nition of a p-value (Casella and Berger,6 p. 397)

pH0 …p-value µ a† µ a for 0 < a < 1: …4†
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The modi�ed p-value cannot exceed the usual one, whether based on a one-sided or
two-sided approach, so a test and con�dence interval based on it is less conservative.

2.4 Con¢dence intervals based on an unconditional approach with
nuisance parameters

For comparisons of parameters from two discrete distributions, the joint distribution
of the data involves the parameter of interest (e.g., a difference between parameter
values for two samples) plus some other parameter(s). These other parameters are
nuisance parameters, usually not being of primary interest. When nuisance parameters
exist, construction of a con�dence interval is more complicated. For ‘exact’ inference
with contingency tables, a popular approach is a conditional one that eliminates
nuisance parameters by conditioning on their suf�cient statistics. This is the basis of
Fisher’s exact test and a method that section 5 discusses for constructing a con�dence
interval for an odds ratio. The conditional approach increases the degree of discrete-
ness, however. In some cases this can result in unacceptable conservatism. It is even
possible for a conditional distribution to be degenerate, when only one sample can have
the required values of the suf�cient statistics. More importantly, the conditional
approach is limited to certain parameters (the ‘natural parameter’ for exponential
family distributions). For comparing two binomial distributions, for instance, it is
limited to the difference of logits, which is the log odds ratio.

An alternative approach to eliminating the nuisance parameter is unconditional. For
a nuisance parameter c, let p…y0; c† denote the p-value for testing H0 : y ˆ y0 for a given
value of c. The unconditional approach takes the p-value to be supcp…y0; c†, the largest
over all possible values for the nuisance parameter. This is a legitimate p-value (Casella
and Berger,6 p. 397). As usual, the con�dence interval consists of values of y0 for which
this p-value exceeds a. This approach is also conservative. However, if p…y0; c† is
relatively stable in c, this method has the potential to improve on conditional methods.
See, for instance, Suissa and Shuster,12 who showed improvement in power over
Fisher’s exact test for testing equality of two independent binomials.

2.5 Almost `exact’ approaches
Our focus in this article is on ‘exact’ methods for which the nominal con�dence level

is necessarily a lower bound on the actual level. In practice, it is often reasonable to
relax this requirement slightly. Conservativeness can be reduced somewhat if the
coverage probability for a con�dence interval is allowed to go slightly below 1 ¡ a
for some y values.

An increasingly popular way to do this inverts a test using an exact distribution but
with the mid p-value. This replaces p…T ˆ to† in the p-value by …1=2†p…T ˆ to†. For
instance, a one-sided p-value has form p…T > to† ‡ …1=2†P…T ˆ to†. This depends only
on the data, unlike the Stevens5 randomized p-value of form p…T > to† ‡ U £ p…T ˆ to†
where U is a uniform(0, 1) random variable. The randomized p-value achieves the
nominal size, and the mid p-value replaces U in it by its expected value. Then, it is
possible to exceed the nominal size, but usually not by much. Note that the sum of the
one-tailed mid p-values equals 1, whereas for discrete data the sum of the two one-tailed
ordinary p-values exceeds 1.
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The mid p-value does not necessarily satisfy (4). Intervals based on inverting tests
using the mid p-value cannot guarantee coverage probabilities of at least the nominal
level. However, evaluations for a variety of problems3 ,14 have shown that it still tends
to be somewhat conservative, though necessarily less so than using the ordinary p-
value. An advantage over ordinary asymptotic methods is that it uses the exact
distribution and provides an essentially exact method for moderate sample sizes,
since the difference between the mid p-value and ordinary ‘exact’ p-value diminishes
as the sample size increases and the discreteness in the tails diminishes. This recom-
mendation is particularly relevant for the conditional approach, which has greater
discreteness than the unconditional approach.

3 Analyses for a binomial proportion

Let T denote a binomial variate for n trials with parameter p, denoted bin…n; p†. The tail
method (1) gives the most commonly cited ‘exact’ con�dence interval for p, the
Clopper–Pearson interval. The endpoints satisfy

Pn

kˆto

n
k

± ²
pk

L…1 ¡ pL†n¡k ˆ a=2 and Pto

kˆ0

n
k

± ²
pk

U…1 ¡ pU†n¡k ˆ a=2;

except that pL ˆ 0 when t0 ˆ 0 and pU ˆ 1 when to ˆ n. Various evaluations have
shown that this interval tends to be extremely conservative for small to moderate
n.14 ,15 ,17 When to ˆ 0, it equals ‰0; 1 ¡ …a=2†1=nŠ. The actual coverage probability
necessarily exceeds 1 ¡ a=2 for p below 1 ¡ …a=2†1=n and above …a=2†1=n. This is the
entire parameter space when n µ log…a=2†=log…0:5†, for instance n µ 5 for a ˆ 0:05.

Sterne18 proposed inverting a single test by forming the acceptance region with
outcomes ordered by their probabilities (i.e., p-value (2)). Blyth and Still19 and Casella20

amended this method slightly so that the con�dence region cannot contain unconnected
intervals and so natural symmetry and invariance properties are satis�ed. Blaker7

discussed intervals based on inverting the test having p-value equal to the minimum tail
probability plus the probability no greater than that in the other tail. This yields
intervals similar to the Blyth–Still–Casella intervals that are contained within the
Clopper–Pearson intervals and are simpler to compute (the Blaker article contains
short S-Plus functions for doing this). Unlike the Blyth–Still–Casella intervals, these
intervals necessarily have the nestedness property. The Blyth–Still interval is available in
StatXact.3

For any method, the actual coverage probability at a �xed value of p is the sum of the
binomial probabilities of all those outcomes t0 for which the resulting interval covers p.
Figure 1 shows the actual coverage probabilities of the Clopper–Pearson and Blaker
intervals for nominal 95% con�dence intervals, plotted as a function of p, when
n ˆ 10. This �gure illustrates the superiority of forming the con�dence interval by
inverting a single two-sided test. Table 1 shows the 11 con�dence intervals for each
method. For comparison, Table 1 also shows the Blyth–Still intervals. These are similar
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Figure 1 Coverage probabilities for 95% con� dence intervals for a binomial parameter p with n ˆ 10

Table 1 Nominal 95% con� dence intervals for a binomial proportion with t
successes in n ˆ 10 trials

Clopper–Pearson Blaker Blyth–Still
interval interval interval

t Lower Upper Lower Upper Lower Upper

0 0.000 0.308 0.000 0.283 0.000 0.267
1 0.002 0.445 0.005 0.444 0.005 0.444
2 0.025 0.556 0.037 0.555 0.037 0.556
3 0.067 0.652 0.087 0.619 0.087 0.619
4 0.122 0.738 0.150 0.717 0.150 0.733
5 0.187 0.813 0.222 0.778 0.222 0.778

Note: Blyth–Still intervals were obtained using StatXact. For count 6 µ t µ 10,
limits equal …1 ¡ yU, 1 ¡ yL) for limits given for 10 ¡ t .
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to the Blaker intervals. As n increases, the conservatism of the Clopper–Pearson interval
dies out rather slowly.16

Some ‘exact’ methods (such as Clopper–Pearson) are so conservative that, for
applications in which maintaining at least the desired level is not crucial, it may even
be preferable to use a good large-sample method rather than that ‘exact’ method. For
estimating a proportion, the most popular large-sample 95% con�dence interval is
p̂p § 2

����������������������
p̂p…1 ¡ p̂p†=n

p
. This interval is based on inverting results of the Wald test using test

statistic z ˆ …p̂p ¡ p0†=
����������������������
p̂p…1 ¡ p̂p†=n

p
; that is, it is the set of p0 for which jzj µ 2.

Unfortunately, this ‘Wald inerval’ behaves very poorly; for instance, it yields the
degenerate interval (1.0, 1.0) for the example of x ˆ 5 in n ˆ 5 trials discussed at the
beginning of this article, and generally the coverage probabilities tend to be too low
even for quite large samples.17 However, other large-sample intervals behave quite well.
The interval based on inverting the test using test statistic z ˆ …p̂p ¡ p0†=

���������������������������
p0…1 ¡ p0†=n

p

(i.e., the score test) has coverage probability that tends to �uctuate around 0.95 except
for a couple of low probabilities for p values close to 0 and 1.16 The adjustment of the
Wald interval that �rst adds two outcomes of each type before computing
p̂p § 2

����������������������
p̂p…1 ¡ p̂p†=n

p
has the same center as the score interval but is slightly wider and

tends to be somewhat conservative, but not as much so as the Clopper–Pearson
interval.16 Figure 2 illustra tes, showing coverage probabilities when n ˆ 10 for the

Figure 2 Coverage probabilities for 95% con� dence intervals for a binomial parameter p with n ˆ 10
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very conservative ‘exact’ Clopper–Pearson interval, the very liberal Wald interval, and
the adjusted Wald large-sample interval using an extra two outcomes of each type.
Forming an interval by inverting the likelihood-ratio test also works better than the
Wald interval.

4 Di¡erence between two binomial parameters

Next consider the difference of proportions for two independent binomial samples,
where Xi is bin…ni; pi† and p̂pi ˆ Xi=ni, i ˆ 1; 2. The joint probability mass function is the
product of the binomial mass functions for X1 and X2 . This can be expressed in terms
of y ˆ p1 ¡ p2 and a nuisance parameter such as p1 or p2 or (p1 ‡ p2 )=2; for example

f …x1; x2; n1 ; n2; p1 ; p2† ˆ
n1

x1

³ ´
…p1†x1 …1 ¡ p1†n1¡x1

n2

x2

³ ´
p

x2
2 …1 ¡ p2†n2 ¡x2

ˆ
n1

x1

³ ´
…y ‡ p2†x1 …1 ¡ y ¡ p2†n1 ¡x1

n2

x2

³ ´
p

x2
2 …1 ¡ p2†n2¡x2

ˆ f …x1 ; x2; n1 ; n2 ; y; p2†:

For binary data, the conditional approach for eliminating the nuisance parameter p2
applies only with the logit of the probability, so it applies for the odds ratio or its log
rather than the difference of proportions.

One way to eliminate p2 uses the unconditional product mass function to obtain a p-
value as if p2 were known and then maximizes this p-value over the possible values of
p2 . With a statistic T such that large to contradicts H0 , the p-value for H0 : y ˆ y0 is

p…y0† ˆ supp2
p‰T ¶ t0; y0 ; p2 Š;

where the sup is taken over the permissible p2 for the �xed y0 . Santner and Snell21

proposed an unconditional approach by inverting two one-sided tests using
T ˆ p̂p1 ¡ p̂p2 .

For interval estimation of p1 ¡ p2 , Santner and Snell21 actually stated a preference for
the Sterne18 approach, noting that it usually gives shorter intervals. However, that
approach was then computationally infeasible except for very small fnig. Chan and
Zhang22 showed that conservativeness of the Santner and Snell tail method was
exacerbated by the severe discreteness of T ˆ p̂p1 ¡ p̂p2 for small samples. For that
application of the tail method, each sample with the same value of p̂p1 ¡ p̂p2 has the same
interval (for the given sample sizes). As discussed in section 2.2, improved performance
results from inverting a test with a less discrete statistic. Chan and Zhang used the score
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statistic23 ,24 but with its exact distribution. For testing H0: p1 ¡ p2 ˆ y0 , the version of
that statistic with large-sample standard normal null distribution is

T ˆ …p̂p1 ¡ p̂p2† ¡ y0���������������������������������������������������������������
~pp1…1 ¡ ~pp1†=n1 ‡ ~pp2…1 ¡ ~pp2†=n2

p ; …5†

where ~pp1 and ~pp2 denote the ML estimates of p1 and p2 subject to p1 ¡ t2 ˆ y0 . Chan
and Zhang22 used the tail method with this statistic. Better performance yet tends to
result from inverting the score test as a single two-sided test, in which the p-value
compares the chi-squared form T2 of the score statistic to t2

o .25 StatXact, as of Version
5, provides these intervals and the Santner–Snell interval.

Table 2 shows some intervals for the Santner and Snell tail method, the Chan and
Zhang tail method (i.e., inverting two one-sided score tests) and for the Agresti and Min
two-sided adaptation, for various (x1; x2 ) values with n1 ˆ n2 ˆ 10. Figure 3 illustra tes
performance, plotting the coverage probability for these three methods as a function of
p1 . The �rst panel in Figure 3 holds p2 ˆ 0:3 �xed and the second panel holds
p1 ¡ p2 ˆ 0:2 �xed. Greater differences in coverage probability curves can occur
with unbalanced sample sizes.

Interestingly, Coe and Tamhane26 and Santner and Yamagami27 also dealt with
interval estimation of p1 ¡ p2 with a generalized Sterne-type approach, but have not
received much attention in the subsequent literature or in statistical practice. These
methods also provide intervals with better coverage properties than the Santner and
Snell21 or Chan and Zhang22 tail-method intervals. These two articles used different
adaptations of the Sterne method in constructing the acceptance regions. The result is
that the Coe and Tamhane intervals tend to be shorter for small to moderate jp̂p1 ¡ p̂p2 j
whereas the Santner and Yamagami intervals tend to be shorter for large jp̂p1 ¡ p̂p2 j.
Coe28 provided a SAS macro for the Coe and Tamhane approach.

As in the single-sample case, when the guarantee of maintaining at least the desired
coverage probability is not crucial, some ‘exact’ methods can be so conservative as to be

Table 2 Nominal 95% con� dence intervals for difference of proportions with binomial outcomes x1 and x2 in
n1 ˆ n2 ˆ 10 independent trials

Santner–Snell Chan–Zhang Agresti–Min Agresti–Caffo
interval score interval score interval adj. Wald interval

x1 x2 Lower Upper Lower Upper Lower Upper Lower Upper

5 0 0.014 0.829 0.118 0.813 0.132 0.778 0.093 0.740
5 1 ¡0:089 0.764 ¡0:020 0.741 ¡0:001 0.700 ¡0:020 0.686
5 2 ¡0:188 0.695 ¡0:146 0.671 ¡0:142 0.646 ¡0:124 0.624
5 3 ¡0:282 0.620 ¡0.260 0.601 ¡0:249 0.560 ¡0:222 0.556
5 4 ¡0:373 0.542 ¡0:369 0.539 ¡0:349 0.507 ¡0:314 0.481
5 5 ¡0:459 0.459 ¡0:456 0.456 ¡0:419 0.419 ¡0:400 0.400
2 0 ¡0:272 0.620 ¡0:129 0.556 ¡0:132 0.525 ¡0:124 0.457
2 1 ¡0:372 0.542 ¡0:280 0.464 ¡0:265 0.441 ¡0:240 0.407
2 2 ¡0:459 0.459 ¡0:386 0.386 ¡0:377 0.377 ¡0:346 0.346
2 3 ¡0.542 0.373 ¡0.490 0.309 ¡0.455 0.296 ¡0.446 0.279
2 4 ¡0:620 0.282 ¡0:585 0.229 ¡0:551 0.224 ¡0:538 0.205
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less useful than an approximate large-sample method. However, the most popular
large-sample 95% con�dence interval,

…p̂p1 ¡ p̂p2† § 2

�������������������������������������������������
p̂p1…1 ¡ p̂p1†

n1
‡

p̂p2…1 ¡ p̂p2†
n2

s

;

which inverts the Wald test, behaves poorly with small samples. It tends to have
coverage probabilities much below the nominal values, especially when both pi are near
0 or near 1. Agresti and Caffo29 showed that the simple adaptation of adding two
observations to each sample, one of each type, before computing the Wald interval
improves it dramatically. Table 2 also shows this adjusted Wald interval, and Figure 4
compares its coverage probabilities when n1 ˆ n2 ˆ 10 to those for the Santner and
Snell method and the ordinary Wald interval. Among methods that are more compu-
tationally intensive, inverting the large-sample score test by treating (5) as standard
normal also works quite well. (See Nurminen30 for its implementation.)

5 Con¢dence intervals for the odds ratio in 2 £ 2 tables

Next we consider con�dence intervals for the odds ratio y in a 2 £ 2 contingency table.
Here, the standard ‘exact’ approach is the conditional one. Assuming a multinomial
distribution for the cell counts fnijg, or assuming fnijg are independent Poisson, or
assuming the rows or the columns are independent binomials, conditioning on row and
column marginal totals yields a distribution depending only on y. For testing H0: y ˆ 1,
this distribution is the hypergeometric. Constructing a con�dence interval requires

Figure 3 Coverage probabilities of 95% con� dence intervals for p1 ¡ p2 based on independent binomials with
n1 ˆ n2 ˆ 10
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inverting the family of tests for various non-null values y0 . This leads to a noncentral
version of the hypergeometric distribution,

P…n11 ˆ tjfni‡g; fn‡jg; y† ˆ

n1‡
t

³ ´
n ¡ n1‡
n‡1 ¡ t

³ ´
y

t

P
s

n1‡
s

³ ´
n ¡ n1‡
n‡1 ¡ s

³ ´
y

s
:

For ‘exact’ interval estimation of this parameter, Corn�eld31 suggested the tail method
(1). This is the most common ‘exact’ method in practice, and it is the only option in
StatXact.

In forming a con�dence interval for y, Baptista and Pike32 adapted the Sterne18

approach of inverting a single two-sided test with acceptance region based on ordered
null probabilities. Alternatively, one could invert a two-sided test using a standard test
statistic. The score statistic for testing H0 : y ˆ y0 with two independent binomials24 is
proportional to

T ˆ n1…p̂p1 ¡ p̂p1†2 1
n1 ~pp1…1 ¡ ~pp1†

‡
1

n2 ~nn2…1 ¡ ~pp2†

µ ¶
;

where ~pp1 and ~pp1 are the ML estimates of p1 and p2 subject to y ˆ y0 . Agresti and Min25

inverted ‘exact’ conditional tests using this statistic. The left side of Table 3 shows the
Corn�eld and Agresti–Min intervals when n ˆ 20 and each marginal count is 10.
Figure 5 plots coverage probabilities for log…y† for the two approaches, conditional on
these margins. Inverting a single two-sided test gives better results. Similar results occur
by inverting the test using the exact conditional distribution but with Blaker’s7 p-value.

Figure 4 Coverage probabilities of 95% con� dence intervals for p1 ¡ p2 based on independent binomials with
n1 ˆ n2 ˆ 10
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Another way to construct intervals that are shorter than with Corn�eld’s ‘exact’
method is to invert a test using the mid-p-value. Table 3 shows the resulting adaptation
of the Corn�eld intervals. They also tend to be a bit shorter than those obtained by
inverting the single two-sided ‘exact’ conditional score test. However, they do not have
the guarantee that the coverage probability is at least the nominal level.

Table 3 Nominal 95% con� dence intervals for odds ratio with count n11 when each row and
column marginal total is 10

Corn� eld Invert 2-sided Invert 2-sided Mid-p adapted
conditional

interval
conditional test unconditional

test
Corn� eld

n11 Lower Upper Lower Upper Lower Upper Lower Upper

0 0.000 0.09 0.000 0.07 0.000 0.05 0.000 0.06
1 0.0003 0.31 0.0005 0.30 0.0007 0.23 0.0005 0.24
2 0.004 0.76 0.006 0.68 0.006 0.56 0.006 0.60
3 0.018 1.68 0.025 1.48 0.018 1.29 0.024 1.34
4 0.052 3.60 0.069 3.38 0.052 2.81 0.068 2.87
5 0.126 7.94 0.158 6.35 0.130 7.70 0.160 6.25

Note: For count 6 µ n11 µ 10, limits equal …1=yU, 1=yL) for limits given for 10 ¡ n11.

Figure 5 Coverage probabilities for 95% con� dence intervals for the log odds ratio, with n1 ˆ n2 ˆ 10 and
outcome margins ˆ 10
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As section 2.4 mentioned, the conditioning argument used in the exact conditional
approach exacerbates the discreteness. This can cause severe conservativeness
problems. Perhaps surprisingly, except for Troendle and Frank33 and Agresti and
Min,34 the unconditional approach described in the previous section for p1 ¡ p2 does
not seem to have been used for the odds ratio. This approach is possible when the
contingency table arises from two independent binomial samples, in which case
y ˆ ‰p1=…1 ¡ p1†Š=‰p2=…1 ¡ p2†Š. It also applies for a single multinomial sample over
the four cells, after conditioning on the row totals. Because the total number of
outcomes of the two types (i.e., the two column totals) is not �xed, the relevant
product binomial distribution is much less discrete. This gives the potential to reduce
conservatism because of this, yet there is also the potential of increasing conservatism
by forming the p-value using the worst-case scenario for the nuisance parameter.

We used the unconditional approach with the score test statistic to construct
con�dence intervals for the odds ratio. Table 3 shows some examples. For the case
n1 ˆ n2 ˆ 10, Figure 6 compares coverage probabilities for the Corn�eld ‘exact’
conditional interval, the conditional interval based on inverting an ‘exact’ two-sided
score test, and the ‘exact’ unconditional interval using the score statistic. Here, we
generated the two binomial samples without any restriction on the response margins.
Plots are shown as a function of p1 when p2 is �xed at 0.3 and when y is �xed at 2.0.
See Agresti and Min34 for further details.

Again, for some purposes it is better to use a good large-sample method than an
overly conservative ‘exact’ one such as Corn�eld’s. The delta method yields the simple
large-sample 95% interval for the log odds ratio,

log…ŷy† § 2

��������������������������������������������
1

n11
‡

1
n12

‡
1

n21
‡

1
n22

s

; …6†

Figure 6 Coverage probabilities for 95% con� dence intervals for odds ratio, when n1 ˆ n2 ˆ 10
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which works quite well, usually being somewhat conservative. When any nij ˆ 0, it is
possible to improve the delta method formula by using the sample ŷy value (0 or 1) as
one end point but adding a constant to the cells in using (6) to obtain the other
endpoint.35

In closing this section, we mention that considerable debate has occurred over the
years about the conditional versus unconditional approach to testing whether y ˆ 1.
See Sprott36 (Section 6.4.4) for a recent cogent support of arguments originally voiced
by Fisher against the unconditional approach. The same arguments apply to interval
estimation.

6 Con¢dence intervals for other parameters

Similar results occur for other parameters of interest in discrete data problems. For
instance, the discussion of section 4 on the difference between two binomial parameters
applies also to their ratio, the relative risk y ˆ p1=p2 . Again, an unconditional approach
eliminates the nuisance parameter in the test to be inverted. We illustra te by inverting
‘exact’ tests using the score statistic that is used for large-sample inference.24 ,37 The
score test statistic for H0 : y ˆ y0 is

T ˆ
n1…p̂p1 ¡ ~pp1†2

~pp1…1 ¡ ~pp2†
‡

n2…p̂p2 ¡ ~pp2†2

~pp2…1 ¡ ~pp2†
;

where ~pp1 and ~pp1 are the ML estimates of p1 and p2 subject to p1=p2 ˆ y0 . (For y0 ˆ 1,
this and the score statistics for the odds ratio and the difference of proportions all
simplify to the ordinary Pearson chi-squared statistic.) Figure 7 compares coverage

Figure 7 Coverage probabilities of 95% con� dence intervals for p1 ¡ p2 based on independent binomials with
n1 ˆ n2 ˆ 10
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probabilities of 95% con�dence intervals based on the tail method and based on
inverting the single two-sided score test using T with its exact distribution, when
n1 ˆ n2 ˆ 10. One panel refers to p2 ˆ 0:3 and the other to y ˆ 2. Large-sample
approximate intervals based on inverting the chi-squared test using T also have good
performance.30 ,38

A case related to the previous section is construction of a con�dence interval for an
odds ratio that is assumed constant in a set of 2 £ 2 tables. Cox39 (p. 48) and Gart40

described the tail interval of form (1). For computing and software, see Mehta et al.,41

Vollset et al.,42 and StatXact. For examples of the advantage of instead inverting a
single two-sided test, see Kim and Agresti,11 who used a Sterne-type approach. When
many points in the sample space can have the same value of the test statistic, they
showed how one can reduce the conservativeness further by using the null probability
of the observed table to form a �ner partitioning within �xed values of the test statistic
(Section 2.3). For instance, to illustra te the tail method, Gart40 gave a 95% con�dence
interval of (0.05, 1.16) for a 2 £ 2 £ 18 table. Inverting the two-sided test, the Kim and
Agresti interval yields (0.06, 1.14), and it reduces further to (0.09, 0.99) with a more
�nely partitioned p-value.

A class of parameters that includes the odds ratio is the set of parameters for logistic
regression models. Cox39 (p. 48) suggested the tail method, using the conditional
distribution to eliminate other parameters. Inverting a two-sided test using that
distribution would tend to give shorter intervals. An open question is whether an
unconditional approach may provide further improvement in some cases, because of a
reduction in discreteness. This is the case for small samples with the odds ratio for a
single 2 £ 2 table. However, it is unclear how the conservativeness may increase by
taking the supremum for the p-value using several tables, and the procedure would be
highly computationally intensive. Implementing the Berger and Boos43 approach of
maximizing over a con�dence interval for the nuisance parameters and adjusting the
p-value appropriately may be helpful.

7 Summary: Recommendations on dealing with discreteness

In summary, discreteness has the effect of making ‘exact’ con�dence intervals more
conservative than desired, We make the following recommendations for reducing the
effects of that discreteness. First, as emphasized throughout this article, invert two-sided
tests rather than two one-sided tests (the tail method). Secondly, in that test use a test
statistic that alleviates the discreteness (e.g., for comparing two proportions, use the
score statistic rather than p̂p1 ¡ p̂p2). Thirdly, when appropriate use an unconditional
rather than conditional method of eliminating nuisance parameters.

This article has primarily discussed con�dence interval methods that attain at least
the nominal con�dence level. More generally, for three types of situations in which a
statistician might select a method, we believe the preferred method differs. One
situation is that dealt with in this article, in which one needs to guarantee a lower
bound on the coverage probability. A second situation, more important for most
statistica l practice, is when one wants the actual coverage probability to be close to the
nominal level but not necessarily to have it as a lower bound. A third situation is that of
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teaching basic statistical methods in a classroom or consulting environment, for which
one may be willing to sacri�ce quality of performance somewhat in favor of greater
simplicity.

For most statistical practice (i.e., situation two), for interval estimation of a propor-
tion or a difference or ratio of proportions, the inversion of the asymptotic score test
seems to be a good choice.14,38 ,44 This tends to have actual level �uctuating around the
nominal level. If one prefers that level to be a bit more conservative, mid-p adaptations
of ‘exact’ methods work well. For situations that require a bound on the error (i.e.,
situation one), it appears that basing conservative intervals on inverting the ‘exact’ score
test has reasonable performance. For teaching (i.e., situation three), the Wald-type
interval of point estimate plus and minus a normal-score multiple of a standard error is
simplest. Unfortunately, this can perform poorly, but simple adjustments sometimes
provide much improved performance.
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