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Suppose that subjects respond to a battery of questions (items) of a similar nature in a
survey, with each item having the same categorical scale. This article discusses models
that express logits for the response distributions in terms of subject and item effects. The
models, which generalize the Rasch model, have interpretations referring to subject-
specific comparisons of the items. Recent literature shows that one can estimate item
parameters using estimates of main effect parameters in corresponding quasi-symmetric
log-linear models. We discuss this connection, giving primary attention to ordinal-
response models using adjacent-category logits and cumulative logits. For the case of two
items, we give expressions for models and corresponding parameter estimates that are
the basis of simple tests of marginal homogeneity for square ordinal contingency tables.

Logit Models and Related Quasi-Symmetric
Log-Linear Models for Comparing Responses to
Similar Items in a Survey

ALAN AGRESTI
University of Florida

his article deals with modeling responses of subjects in a

survey to a set of similar items that use the same categorical
scale. Table 1, taken from the 1989 General Social Survey (Davis and
Smith 1991) conducted by the National Opinion Research Center,
illustrates the type of data. Subjects gave their opinions regarding
government spending on the environment, health, assistance to big
cities, and law enforcement, using a 3-point response scale (too little,
about right, too much). Table 2 is similar, taken from the same survey.
Subjects gave their opinions on early teens (aged 14-16) having sex
relations before marriage and aman and a woman having sex relations
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70  SOCIOLOGICAL METHODS & RESEARCH

TABLE 2: Opinions About Teenage Sex and Premarital Sex

Premarital Sex
Teen Sex 1 2 3 4
1 141 (141) 34 (34.5) 72 (72.4) 109 (109.0)
2 4(1.8) 549 23 (22.8) 38 (37.5)
3 1 (0.6) 0(1.8) 9 (8.9 23 (22.9)
4 0(0.1) 0(0.3) 1(1.5) 15 (15)

NOTE: Fitted values for cumulative logit model in parentheses. Categories are 1 =always wrong,
2 = almost always wrong, 3 = wrong only sometimes, 4 = not wrong.
SOURCE: 1989 General Social Survey (Davis and Smith 1991).

before marriage, using a 4-point response scale (always wrong, almost
always wrong, wrong only sometimes, not wrong at all).

Two types of analyses for such data lead to distinct types of models.
One type of analysis pertains to the dependence structure of the
responses. For instance, one might study the strength of association
between responses on various pairs of items, analyzing whether some
pairs are more strongly associated than others or whether the pairwise
association varies according to responses on other items. These mat-
ters relate to aspects of the joint distribution. Standard log-linear
models are well designed for such investigations.

A second type of analysis relates to how the item response distri-
butions differ. In Table 1, for instance, one might study whether
subjects regarded spending as relatively higher on one item than the
others. The analysis then involves comparing one-way marginal dis-
tributions. This article focuses on the second type of analysis. Our
main emphasis concerns logit models that permit subject heterogene-
ity in the response distributions. For such models, we show how to
estimate parameters that describe marginal effects by fitting certain
log-linear models for the joint distribution.

We begin by reviewing the Rasch model, a popular item-response
logit model that permits subject heterogeneity. We then review an
interesting connection whereby one can estimate item parameters in
the Rasch model using ordinary main effect estimates in a quasi-
symmetric form of log-linear model. We discuss a generalized Rasch
model for nominal responses, and show how to use a related quasi-
symmetry model to make comparisons of marginal distributions. In
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particular, we see that the main effect parameters in quasi-symmetry
models relate to simple odds-ratio comparisons of marginal distributions.

The main focus of the article concerns generalizations of the Rasch
model that apply to ordinal response scales. For a model using adjacent-
category logits, a related quasi-symmetry model is a special case of
the ordinary model in which the main effect terms reflect the ordinal-
ity. An alternative generalization for ordinal responses uses cumula-
tive logits.

For most cases, one can use standard software to fit the quasi-
symmetric log-linear models. One can check model adequacy using
goodness-of-fit tests and residuals for those 1og-linear models. We also
discuss simpler representations of the ordinal models that occur when
there are only two items. This leads to simple ways of testing marginal
homogeneity for ordinal matched-pairs data in square contingency
tables.

THE BINARY RASCH MODEL

We first introduce some notation. Suppose n subjects respond to T
items that use the same categorical scale, having r categories. For
subject i and item j, let ¢,; denote the probability of response in
category h, h=1,...,r, s0 %, ¢,; = 1. The notation reflects potential
within-subject and between-subject heterogeneity. The use of subject-
specific notation allows us to consider models that differ from ordinary
models whereby responses for different subjects are identically dis-
tributed. For instance, in the binary response case (r = 2), the usual iid
assumption leads to the binomial sampling model; permitting different
response probabilities for each subject is a way of allowing for
additional variability (i.e., what is called overdispersion).

For binary responses, there is an enormous literature on models for
subject-specific probabilities. Most of this literature refers to item-
response models in which the two possible outcomes refer to correct
and incorrect responses to a question. The best known item-response
model is the Rasch model (Rasch 1961). It states that the probability
of correct response by subject i on item j depends on subject abilities
{p;} and item parameters {7;} through the equation

Downloaded from smr.sagepub.com at UNIV OF FLORIDA Smathers Libraries on March 20, 2012


http://smr.sagepub.com/

72 SOCIOLOGICAL METHODS & RESEARCH

¢ = pt/(1 +pit). ¢))

Then ¢,; = 1/(1 + p7;), and we can express the two probabilities
succinctly in a single formula as

_(p)®
T 1+pg;

Ori )]

where I(h) denotes an indicator of whether the response occurs in the
first category (i.e., I(h) = 1 if h=1, and I(h) = 0 if h = 2). The odds of
a correct response has multiplicative form ¢,,/¢,; = p;t;, corresponding
to additive effects in a logit model,

logit(¢,,) = 0, + B;. ©))

The probability of a correct response increases as the subject’s ability
o, or the item easiness f3; increases.

The term o, common to all responses by subject i represents the
effects of characteristics of that subject that could affect the response.
This term is generally regarded as a latent variable. For a subject with
given o, the Rasch model’s local independence assumption states that
responses on separate items are independent. Because of the variation
in {o,}, responses on separate items by the same subject tend to be
more similar than responses on separate items by different subjects.
Thus, averaged over subjects, distributions of pairs of responses have
positive associations. Besides allowing departures from the assump-
tion that each subject has the same probability distribution, models
with subject-specific terms can represent effects of omitted explana-
tory variables or measurement error in explanatory variables. An-
dersen (1980, chap. 6), Collett (1991, chap. 6), Morgan (1992, chap.
6), Hambleton, Swaminathan, and Rogers (1991), Goodman (1990),
and Lindsay, Clogg, and Grego (1991) provide introductions to this
and related models.

In fitting item response models, one’s interest may focus on esti-
mating the subject abilities, the item parameters, or both. Our discus-
sion refers to estimation of the item parameters. A complication is that
the total number of parameters increases as the sample size increases.
As a consequence, the maximum likelihood (ML) estimators do not
converge to the true parameter values. For T = 2 items, for instance,
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the ordinary ML estimator of 8, — 8, converges to double the true value
(Andersen 1980, p. 244). On the other hand, replacing o, by a common
parameter o for all subjects usually results in a poor fit. It implies the
simplistic log-linear model for the joint distribution whereby re-
sponses on the T items are mutually independent.

To estimate item parameters, there are two common ways of
reducing the dimensionality of the parameter space. The first, a
fixed-effects solution, treats the subject effects as nuisance parameters
and eliminates them by a conditional argument. One conditions on the
sufficient statistics for the subject effects and maximizes the resulting
log likelihood, which depends only on the parameters of interest (e.g.,
{B;} in model [3]). Andersen’s (1980) text is a good reference for the
conditional ML approach. The second approach treats the subject
terms as random effects, assuming some distribution for them, such
as normal with unknown standard deviation. One integrates the like-
lihood with respect to that distribution to obtain a marginal likelihood.
One then maximizes the marginal likelihood, which depends also on
the parameters of the random effects distribution. For discussion of
this marginal ML approach, see Bock and Aitkin (1981) and Hamble-
ton et al. (1991).

A disadvantage often quoted for both the conditional ML and
marginal ML approaches is their computational complexity. When the
number of items is small, however, it is actually easy to obtain
conditional ML estimates in Rasch-type logit models. In the next four
sections, we review recent literature showing that conditional ML
estimates are also ordinary ML estimates for main effect parameters
in quasi-symmetric types of log-linear models.

THE RASCH MODEL AND QUASI-SYMMETRY

We continue with the case of T binary-response items. When we
cross-classify the responses of subjects on T binary items, we obtain
a 27 contingency table. The jth dimension represents the two possible
response outcomes for the jth item. We now discuss the connection
between the Rasch model and a log-linear model for this contingency
table. For ease of notation, we use T = 3, which occurs for data
analyzed later in the section. Let (a, b, c) denote a potential response
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pattern for the three items, where each possible outcome is 1 or 2. Let
T, denote the probability of this sequence for a randomly selected
subject, with ¥ X, m,,. = 1. This distribution refers to an averaging,
for some population, of subject-specific probabilities. Let n,,, denote
the number of subjects in the sample having response pattern (a, b, ¢),
and let m,, = nm,, denote its expected frequency. Log-linear models
treatthe cell counts {n,, } inthe 2 X2 X 2 table as a multinomial sample
of size n, with cell probabilities proportional to {m,,_}.

To provide intuition for the connection between the Rasch model
and log-linear models, we show how the probabilities {~,,,} for the
2 X 2 X 2 cross-classification of the three items (averaged over
subjects) relate to the subject-specific probabilities {¢,;}. For a par-
ticular subject i, the probability of the response sequence (a, b, c)
equals 0,,9,,9.s. For a randomly selected subject from a population
of N subjects, the joint probability of these responses equals

Tape = (izq’auq’bizq’as)/N .

Substituting the Rasch expression (2), we see that

N b),cl ) p[(a)+l(b)+l(c)
= g@g®le : .
Mabe =170 703 >,-:N(1 +pa)(1 +pr)(1 +pas)

@)

The summation term in this expression takes the same value if we
permute the indexes (g, b, ¢) in any way. Thus the expected frequencies
satisfy the log-linear model

log My, = Bl(@) + BoA(D) + BsI(C) + A, %)

where the interaction term A, is identical for all permutations of its
argument; that is, Ay, = Ay = Ayyy and Aypp = Mgy = Ay

The parameters {B,, B,, Bs} in (5) are identical to {B,, B,, B} in the
Rasch model (3). Model form (5) is the special case of the ordinary
log-linear model

10g Mo = W+ Ay + Aggpy + Mgy + Nioiaty + Msay + Mase) + Mzsase

for a 2 x 2 x 2 table in which the two-factor terms are identical and
Symmetl'ic in their indexes (e.g., 7"12(:111) = 7\:13(,,5) = A’ZS(ab) = }\‘ll(ba) = %13(“,) =
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A2seay)» and the three-factor term is symmetric in its indexes, but the
main effect terms are distinct. Because of the symmetry and identical
values of the two-factor terms, without loss of generality we can set
them equal to zero by absorbing them into the three-factor term, as in
(5). The main effect terms in that model, which are the Rasch item
effects, relate to the log-linear parameters by {f; = A,y — A }. The
indicator notation simply indicates coding that makes the parameters
identifiable by setting the second parameter equal to zero for each
main effect. Because model (5) exhibits symmetry in its interaction
term but not in the main effects, it is called a quasi-symmetry model.
Tjur (1982) showed the interesting result that the ordinary ML estima-
tors of {pB;} in the quasi-symmetry model (5) are identical to the
conditional ML estimators of {f,} in the Rasch model (3).

For T = 3, the complete symmetry model states that m,,, is identical
for any permutation of (a, b, ¢). The quasi-symmetry model is a
generalization of the complete symmetry model that permits different
main effect parameters for each item, and hence marginal heterogene-
ity. For three items, the complete symmetry model is the special case
of (5) in which B, = B, = B;. The symmetric interaction term in (5)
implies, for instance, that each pair of items has the same associa-
tion, conditional on the response for the other item. There are other
ways of defining quasi-symmetry that preserve distinct values for
some of the higher-order terms (e.g., Bishop, Fienberg, and Holland
1975, p. 303), but the most common approach is this one (Darroch
1986).

In averaging over subjects in (4), we made no assumption about a
parametric form for subject effects. This suggests that a nonparametric
type of marginal ML estimation for the Rasch model should give item
parameter estimates similar to those for main effect parameters in
log-linear model (5). In fact, Tjur (1982) also proved that the ordinary
ML estimators of {f;} in model (5) result from a slightly extended
version of the likelihood obtained with nonparametric marginal ML.
Thus one can use the quasi-symmetry model to obtain conditional ML
and extended nonparametric marginal ML estimates. Under the as-
sumption that the model holds, de Leeuw and Verhelst (1986) showed
~ that a nonparametric marginal ML approach yields estimators that are
identical to the conditional ML estimators with probability increasing
to 1 as n increases for a fixed number of items. They assumed an
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unspecified continuous distribution for the subject parameter. Lindsay
et al. (1991) strengthened this, showing the same result if the subject-
effect distribution has at least (T + 1)/2 support points.

A NOMINAL RESPONSE MODEL AND QUASI-SYMMETRY

The Rasch model extends to a generalized subject-specific logit
model for nominal responses (Andersen 1973). For r response cate-
gories, the model can be expressed using an set of r — 1 1ogits, such as
the baseline category logits

108(Ony/Prip) = O + By B=2, .. .1 ©)

For each of the r — 1 logits, there is additivity of subject and item
effects. The related log-linear model for conditional ML estimation of
the item effects is the general quasi-symmetry model for an #¥ contin-
gency table (Conaway 1989). That model has form

IOgmab....:=7~1(a)+)"z<b)+---+7‘1'(:)+7~ab....u @)

where the interaction term is symmetric in its indexes.
The quasi-symmetry model most commonly occurs in the literature
for square tables (7 = 2). In that case, (7) simplifies to

lOg mab = A’l(a) + ;\7(1,) + A'abs

where A, = A, for all a and b. For " tables, the complete symmetry
model has log-linear form

log Mg, .. = Aas, .4

where the interaction parameter is symmetric in the indexes. It has a

number of nonredundant interaction parameters equal to the number

of combinations of 7 numbers chosen from {1, 2, . .. ,r} with replace-

ment, which is (” ;’ l) = (r+T-1)YT!(r-1)!. (Bach such choice yields

a separate interaction term, which is identical for all permutations of

the indexes.) One obtains the quasi-symmetry model (7)Tbl adding
r+T-

main effect terms to the symmetry model. Once we have| "¢ ° |interac-
tion parameters, there are (r — 1)(7 — 1) nonredundant main effect
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parameters in the quasi-symmetry model. To make the parameters
identifiable, one adds constraints such as

Moy =hgy=...=Agy=0
My =My = ... =gy =0.

The complete symmetry model is the special case in which the (r —
1)(T - 1) nonredundant main effect parameters also equal zero.

Table 3 summarizes relationships among the quasi-symmetry, com-
plete symmetry, and mutual independence models. The mutual inde-
pendence model is the special case of (7) in which the interaction
parameters are identical; that is, it is a log-linear model with a “grand
mean” parameter and 7 sets of main effect parameters. When the
quasi-symmetry model holds, complete symmetry is equivalent to
marginal homogeneity (Caussinus 1966; Darroch 1981). The standard
test of marginal homogeneity is based on comparing the fits of the
quasi-symmetry and symmetry model, with df = (r - 1)(T' - 1).

The estimable parameters in the generalized Rasch model (6) are
differences between parameters for separate items for each given
response category. For instance, for two items j and k, relative sizes of
estimated item effects in (6) are related to relative sizes of estimated
main effect parameters in the quasi-symmetry model by

B - ﬁhj = (xk(m - ka) - (qu.) ~Rao-

If one uses software (such as GLIM; Francis, Green, and Payne 1993)
having parameter constraints whereby the log-linear main effect
estimate for the baseline level is set to zero, then the ML estimate

K(h) — Q,-(,,) for the quasi-symmetry model equals the conditional ML
estimate 3, — P, in the Rasch model.

To illustrate the use of quasi-symmetric models for estimating
generalized Rasch item parameters, we use Table 4, taken from the
1991 General Social Survey (Davis and Smith 1991). White subjects
in the sample were asked (a) Do you favor busing of (Negro/Black)
and White school children from one school district to another? (b) If
your party nominated a (Negro/Black) for president, would you vote
for him if he were qualified for the job? (c) During the last few years,
has anyone in your family brought a friend who was a (Negro/Black)

and
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TABLE 3: Summary of Quasi-Symmetry, Complete Symmetry, Mutual Independence,
and Ordinal Quasi-Symmetry Models

Number of Nonredundant Parameters

Model Main Effect Interaction Residual df
T- T-
Quasi-symmetry r-1DT-1) (” A I (” A 1)- r-1T-1)
Complete symmetry 0 ™ 5‘ 1) L ff !
Mutual independence (r-nr 1 F- r-1nNT-1
Ordinal quasi-symmetry T-1 (’*5‘ 1) 7 (” - 1)- T-1)
TABLE 4: Opinions About Racial Items
Home
President Busing 1 2 3
1 1 41 (41.0) 65 (68.0) 0(0.1)
2 71 (68.4) 157 (157.5) 1(1.4)
3 1(0.8) 17 (15.5) 0(0.3)
2 1 2(1.6) 537 0(0.0)
2 3(3.8) 44 (44.0) 0(0.1)
3 1(04) 0(1.3) 0 (0.0
3 1 0(0.1) 3(2.3) 1(0.1)
2 024 10 (8.5) 0 (0.0)
3 0(0.6) 0(0.0) 1(1.0)

NOTE: Fitted values for quasi-symmetry model in parentheses. Categories are 1 = yes, 2 = no,
3 =don't know.
SOURCE: 1991 General Social Survey (Davis and Smith 1991).

home for dinner? Each item was answered on a 3-point response scale
(yes, no, don’t know). We denote the three items by B (busing), P
(president), and H (home).

Table 5 shows likelihood-ratio (G?) and Pearson (X?) goodness-of-
fit statistics for several log-linear models. We will not take the numeri-
cal values too literally because the sampling design for this survey is
not simple random sampling and because the data are sparse. How-
ever, these statistics give us indexes for summarizing fit and compar-
ing fits of different models. The quasi-symmetry model gives a much
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TABLE 5: Goodness of Fit of Log-Linear Models for Table 4

Model Likelihood-Ratio Statistic ~ Pearson Statistic df
Mutual independence 66.9 266.5 20
Complete symmetry 4541 430.9 17
Quasi-symmetry 16.3 24.7 13

better fit than the symmetry model (quasi-symmetry with marginal
homogeneity) or the mutual independence model (quasi-symmetry
with no interactions). Table 4 shows the fit for the quasi-symmetry
model. The primary lack of fit results from a single cell in which the
observed count of 1 and fitted value of 0.053 contributes 17.0 to the
Pearson statistic.

Table 6 shows the main effect estimates for the quasi-symmetry
model, using category 1 as the baseline response and H as the baseline
item. There were relatively few responses in the third category (don’t
know), and the main information Table 6 presents is that the estimated
odds of outcome “yes” instead of “no” are much higher for P than for
B or H; that is, White subjects are much more likely to vote for a Black
person for president than to favor school busing or to have brought a
Black person home for dinner. We use these estimates from the
quasi-symmetry model to estimate item effects for the generalized
Rasch model that expresses the logit for a response category in terms
of additive subject and item effects. These help us summarize differ-
ences among the marginal distributions of the items. For instance, for
each subject, the estimated odds of a yes rather than no response for
P are exp(3.734 + 0.005) = 42 times those for B. '

To help readers replicate these results, Table 7 expresses the quasi-
symmetry model for this 3 X 3 X 3 table in the log-linear representation
log m = XP for a vector of expected frequencies m, a design matrix
X, and a vector of parameters 3. Here, m,,, denotes the expected
frequency for B at level a, P at level b, and H at level ¢, and we use
the constraints (as in GLIM) whereby the main effect parameters are
zero for category 1 and for item H. Note that cells having indexes that
are permutations of each other all have the same interaction term. For
instance, m, g, Mysg Myys, My, Mgy, My all USe interaction term A,
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TABLE 6: Estimates of Item Parameters for Table 4

President Busing Home
Category Estimate SE Estimate SE Estimate SE
1 0.000 — 0.000 — 0.000 —
2 -3.734 0.325 0.005 0.164 0.000 —
3 0.537 0.816 2429 0.787 0.000 —

TABLE 7: Log-Linear Representation of Quasi-Symmetry for Table 4

my 0 0 0 0 1 0 0 0 0 0 0 0 0 0 Ay
mp 0 0 0 0 0 1 0 0 0 0 0 0 0 0 Ay
mp O 0 0 0O 0 0 1 0 0 0 0 0 0 0 Apy
map O 0 1 0 0 0 0 1 0 0 0 0 0 0 Ay
Mg 0 0 1 0 0 0 0 0 1 0 0 0 0 0 Ay
my3y 0 0 0 1 0 0 1 0 0 0 0 0 0 0 %113
msp 0 0 0 1 0 0 0 0 1 0 0 0 0 0 Ay
msz 0O 0 0 1 0 0 0 0 0 1 0 0 0 0 Ay
my 1 0 0 0 0 1 0 0 0 0 0 0 0 0 Ay
my; 1 0 0 0 0 0 0 1 0 0 0 0 0 0 Ay
ms13 1 0 0 0 0 0 0 0 1 0 0 0 0 0 7\223
mp 1 0 1 0 0 0 0 1 0 0 0 0 0 0 Ay
lOg My, = 1 0 1 0 0 0 0 0 0 0 1 0 0 0 2@33
mp, 1 0 1 0 0 0 0 0 0 0 0 1 0 0
my3y 1 0o 0 1 0 0 O O 1 O O O O0 O
Myp 1 0 0 1 0 0 0 0 0 0 0 1 0 0
Mg 1 0 0 1 0 0 0 0 0 0 0 0 1 0
my O 1 0 0 0 0 1 0 0 0 0 0 0 0
My O 1 0 0 0 0 0 0 1 0 0 0 0 0
msy3 o 1 0 0 0 O O O o 1 O O O0 O
mp O 1 1 0 0 0 0 0 1 0 0 0 0 0
mgp 0 1 1 0 0 0 0 0 0 0 0 1 0 0
Mmp, O 1 1 0 0 0 0 0 0 0 0 0 1 0
mg O 1 0 1 0 0 0 0 0 1 0 0 0 0
mgp O 1 0 1 0 0 0 0 0 0 0 0 1 0
mg O 1 0 1 0 0 0 0 0 0 0 0 0 1

AN ORDINAL MODEL USING ADJACENT-CATEGORIES LOGITS

We next discuss two types of subject-specific logit models for
ordered categorical responses. These use the two most popular types
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oflogit transforms for ordinal data—adjacent-categories logits (Good-
man 1983) and cumulative logits (McCullagh 1977). For both ap-
proaches, estimates again result from fitting a corresponding quasi-
symmetry model. We use notation for T = 4 items, corresponding to
Table 1.

The first ordinal model has the adjacent-categories logit repre-
sentation

10g(s + 1, i) = O + ;. ®

This is a special case of model (6) in which the item effects have the
ordinal structure B, ., ;— B, = B, for all h; that is, {B,;} is linear in .
In model (8), for each subject, the odds of outcome 4 + 1 instead of
outcome 4 for item j are exp(P; - f,) times the odds for item k. The
item effects are assumed to be identical for each pair of adjacent
categories. A somewhat simpler model decomposes o, in (8) into 9§,
+ o, (Andersen 1973; Andrich 1978; Duncan 1984; Hout, Duncan, and
Sobel 1987; Agresti 1993a). We will not discuss that model because
of our primary interest in estimating item effects rather than subject
effects, and also because the more general structure in (8) relates more
closely to symmetry and quasi-symmetry models. For instance, the
condition of symmetry is the special case of (8) with equal item
parameters.

Generalizing Tjur’s (1982) argument, Agresti (1993a) noted that
conditional ML estimates and extended nonparametric marginal ML
estimates of the item effects in this model are identical to the ordinary
ML estimates obtained in fitting the log-linear model

lOg Mopead = aBl + sz + CB3 + dB4 + )"abcd’ (9)

where A is permutationally invariant, This is a special case of the
quasi-symmetry model that has linear structure for the main effects.
It treats the main effects as variates, with equally spaced scores, rather
than qualitative factors. A generalization of (9) using arbitrary mono-
tone scores {v,} in the linear structure relates to replacing B; by (v, , —
v,)B; in logit model (8). We refer to model (9) as the ordinal quasi-
symmetry model.

Model (9) tends to fit well when there are location shifts in the item
distributions; that is, when observations for one item tend to be shifted
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downward or upward relative to responses for another item. It fits
poorly if the items have quite different dispersion, such as when the
responses fall mostly in one category for one item but are dispersed
among all categories for another item. The estimates of {f;} have the
same order as the sample mean responses (for equally spaced scores)
in the T one-way margins of the r* table. The complete symmetry
model is the special case of the ordinal quasi-symmetry model in
which B, =. . . = B, When model (9) fits well, one can test marginal
homogeneity using a likelihood-ratio test with df = T — 1, based on
comparing its fit to that of the complete symmetry model. Table 3
compares its main effect and interaction structure to models discussed
in the previous section.

To illustrate the ordinal subject-specific logit model (8), we analyze
Table 1 on government spending items. Table 8 shows the goodness
of fit of several log-linear models. The ordinal quasi-symmetry model
(9) fits relatively well (G* = 64.90, df = 63). Table 1 also displays fitted
values for this model. There is a dramatic improvement compared to
the complete symmetry model (which has G* = 638.24, df = 66), at the
expense of only adding three independent parameters.

Denote main effects in the ordinal quasi-symmetry model for the
four items by B, B., Ba, Bz The estimated main effects and asymptotic
standard errors, using the constraint ﬁE =(), are ﬁc = 1.941 (asymptotic
SE =0.118), ﬁL = 0.372 (asymptotic SE = 0.104), ﬁ,, =0.059 (asymp-
totic SE = 0.108). One can use these main effect estimates to describe
marginal heterogeneity by interpreting them as estimates of the corre-
sponding item parameters in the generalization (8) of the Rasch model.
Aid for cities received substantially less support than aid for the other
items. For instance, for each subject, the estimated odds that the
response is “too much” rather than “about right,” or “about right”
rather than “too little,” are exp(1.941) = 7.0 times as high for cities as
for the environment. All asymptotic standard errors of differences of
estimates are about 0.11. To compare all 6 pairs of item parameters
while maintaining a bound of .05 on the overall probability of Type I
error, we used .05/6 = 0.0083 for the o level for each comparison. This
analysis indicates significant differences between all pairs except
and Pg.

One can use software for log-linear models to fit quasi-symmetry
models. To illustrate, Table 9 shows the use of GLIM for obtaining the
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TABLE 8: Goodness of Fit of Log-Linear Models for Table 1

Model Likelihood-Ratio Statistic ~ Pearson Statistic df
Mutual independence 124.3 271.6 72
Complete symmetry 638.2 711.6 66
Ordinal quasi-symmetry 64.9 70.5 63
Quasi-symmetry 58.0 61.7 60

results just quoted for the ordinal quasi-symmetry model, and for
fitting the more general quasi-symmetry model discussed in the pre-
vious section. The %GL terms generate levels; for instance, L has three
levels in blocks of size 1, so L takes levels (1, 2,3,1,2,3,1,...) for
the cells in the order their counts are entered. The factor assigned the
name “‘symm” generates the symmetric interaction terms, one for each
possible subset of indexes {a, b, c, d}, because each interaction term
having the same index is equal. For instance, the second entered cell
count has indexes (1, 1, 2, 1) on (E, H, L, C), and the fourth entered
count has indexes (1, 1, 1, 2), so they share the same symmetry
parameter. In the second fit statement, the coefficients of the terms
denoted by C, L, H, and E are the ordinal item parameters. After being
declared as factors, they are treated as nominal factors rather than
ordinal variates in subsequent model statements.

AN ORDINAL MODEL USING CUMULATIVE LOGITS

Perhaps the most popular model form for ordinal responses uses
cumulative logits. For subject i and item j, denote the cumulative
probability at category i by ¥,; = ¢+ ...+ u A=1,...,r. The
cumulative logit alternative to model (8) has form

log[Yy/ (1 = Y] = 04 = B;, (10)

h=1,...,r-1i=1,...n,j=1,...,T. Weattach a negative sign
to the item parameter so that relatively larger values of f; correspond
to a tendency to make higher responses on the scale for that item. For
each subject, the odds that the response for item a falls above any fixed
level are exp(f, — B,) times the odds for item b. This model has the
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TABLE 9: GLIM Code for Fitting Quasi-Symmetry Models to Table 1

S$units 81
$data count $read
62 17 S 90 42 3 74 31 11
11 7 0 22 18 1 19 14 3
2 3 1 2 0 1 1 3 1
11 3 0 21 13 2 20 8 3
1 4 0 6 9 0 6 5 2
1 0 1 2 1 1 4 3 1
3 0 0 2 1 0 9 2 1
1 0 0 2 1 0 4 2 0
1 0 0 0 0 0 1 2 3
$calc C = %GL(3,3): L = %GL(3,1): H = %GL(3,9): E = %GL(3,27) §
$ass symm =

1,2,3,2,4,5,3,5,6,2,4,54,7,8,5,8,9,3,5,6,5,8,9,6,9,10,2,4,5,4,7,8,5,8,9,4,7,8,7,11,12,8,12,13,5,8,
9,8,12,13,9,13,14,3,5,6,5,8,9,6,9,10,5,8,9,8,12,13,9,13,14,6,9,10,9,13,14,10,14,15 $
$fac symm 15

$yvar count $err pois

$fit symm ! Fits complete symmetry model

$fit symm + C + L + H + E $ ! Fits ordinal quasi-symmetry

$fac C 3L 3 H3 E 3 $ ! nominal main effects

$fit C + L + H + E $ ! Fits mutual independence

$fit + symm $ ! Fits quasi-symmetry

$dis e r ! Displays estimates, fitted values, and residuals

$dis s ! Displays standard errors of difference estimates

proportional odds property, for which the T-item effects {f;} are
identical at each h. For r = 2, this model and the one in the previous
section simplify to the Rasch model. McCullagh (1977) discussed a
related model for T= 2.

One could also assume ordinal structure for subject effects, decom-
posing {oy,} in (10) into

Oy = 8 — 0.

The resulting model holds if for each pairing of subject i and item j,
there is an underlying continuous variable that has a logistic distribu-
tion with mean o, + f3;, and the observed outcome falls in category &
when the underlying continuous variable falls between the “cutpoints”
9, _, and J,. The more general model (10) permits different subjects
to use different cutpoints for determining the response category, with
the region between o, _, ; and o, determining category k for subject
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i. For instance, for a given value for an underlying continuous scale,
one subject may regard it as part of category “good,” while a second
subject regards it as “very good.” Allowing such generality for cut-
points implies that one cannot distinguish between location differ-
ences for different subjects. Hence one can scale the cutpoints so there
is a common mean for the underlying distribution for each subject’s
responses on a given item. Because our focus is on estimating item
effects rather than cutpoints or subject effects, we discuss the more
general model (10). An advantage of that model is that it has symmetry
embedded as the special case of equal item parameters.

Unfortunately, the cumulative logit model does not have reduced
sufficient statistics, so the standard conditional ML approach for
estimating item parameters is unavailable. For the case T'= 2, we now
present (from Agresti and Lang 1993) a way of eliminating the
nuisance parameters by noting a corresponding model for the r X r
table of observed counts. Let

PYy>a,y,<b)

L, =log{
=08 P(Y,<a,y,>b)

}

By the assumed independence of (Y, Y,) for a given subject, each
joint probability in this expression factors as the product of marginal
probabilities. Hence L, = logit(Y,,) — 1ogit(y,;), which equals (o, — o)
— (B, - B,) for model (10). Thus

Ly + Ly =2(B, - Bo), (11)

for all a < b. This expression applies to the r X r table of probabilities
for each subject, but it is straightforward to show that the same
relationship holds for the r X r joint distribution averaged over sub-
jects; that is,

2> ! ’ z> ¢ <alla'ty
log( ‘o« azbsbndb]_‘_log( & > b < aTa'h

2y <y > sRay Ty <o > alartr

]= 2(B: - B2 (12

for all a < b. In fact, when T = 2, equation (12) characterizes the joint
distribution corresponding to model (10).

Representation (12) suggests a way to estimate the difference in
item parameters for the cumulative logit model (10) applied to two
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items. One can maximize the multinomial likelihood for the r X r
observed table, subject to the constraint (12) holding for all (r — 1)/2
combinations of a < b. The special case with no item effect (i.e.,
constraining the sum of log-odds to equal O for all a < b) is an
alternative characterization of the complete symmetry model. One
obtains the estimated item effect using methods for maximizing a
multinomial likelihood subject to constraints. Methodology for doing
this has been available for sometime (e.g., Aitchison and Silvey 1958),
and several individually written programs for doing so exist, but the
method is not available in ordinary log-linear model software. In SAS
(PROC CATMOD), it is possible to obtain a weighted least squares
(WLS) fit of model (12) applied to all a < b. In the next section, we
show how to obtain a good estimate of the item effect with a simple
closed-form expression that relates to fitting the quasi-symmetry
model for a set of collapsed tables.

To illustrate the cumulative logit model, we analyze Table 2. Here
the nature of the response categories (always wrong, almost always
wrong, wrong only sometimes, not wrong at all) makes the use of
equally spaced response scores questionable, and it is not obvious
what scores are appropriate. The cumulative logit model does not
require such a choice. For these data, the ML fit of the model (12) used
to obtain the estimated item effect for the cumulative logit model has
G* = 6.86 and X* = 5.46, based on df = 5. By contrast, the symmetry
model has G* = 378.4 and X* = 282.9 (df = 6). The ML estimate of
B, — B, is 4.46 (asymptotic SE = 0.43). Responses regarding teen sex
tended to be much more conservative than those regarding premarital
adult sex. For instance, for each subject, the estimated odds that
response on teenage sex is < & are exp(4.46) = 87 times the correspond-
ing estimated odds for premarital adult sex.

Table 10 shows the code for using SAS (CATMOD) to fit model
(12), using WLS. In this procedure, one expresses the model in the
form Clog An = X, for a vector of cell probabilities 7. The A matrix
consists of 0 and 1 elements and forms the quadrants of terms used in
(12). After taking the logarithms of these quadrant probabilities, one
forms the appropriate contrasts of them with the C matrix. A disad-
vantage of WLS is that small constants must be added to zero cells
when any of the quadrant totals of sample counts are zero. One should
check the dependence of the WLS estimate on that constant using a
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TABLE 10: SAS Code for WLS Fitting of Model (12) to Table 2

87

data clogit;

input cell $ count @@;

if count=0 then count=1e-2;

cards;
1 141 2 34
5 4 6 5
9 1 10 0

13 0 14 0

proc catmod order=data; weight count;
response

2-2 0 0 0 0 0 o
0O 0 2 -2 0 0 0 O
0 0 0 0 2 -2 0 O
0 0 0 0 0 O0 1 -1
0O 0 0 0 0 0 0 O
0O 0 0 0 0 0 O O
log
0 1 1 1 0 0 0 O
0O 000 0 1 0 0 O
0o o1 1 0 O 1 1
0O 0 0 0 0 0 O0 O
0 0 0 1 0 O O0 1
0O 0 0 0 0 0 O O
0O 0 1 1 0 0 0 O
0 0 0 0 1 1 0 O
0 0 01 0 0 0 O
0o 0 0 0 1 1 1 O
o 1 1.1 0 1 1 1
0O 0 0 0 0 0 O O
0 0 0 1 0 0 O0 1
0O 0 0 0 0 0 O O
o 1 1 1 0 1 1 1
0O 0 0 0 0 0 0 o
0 01 1 0 0 1 1
0 0 0 0 0 0 O O
model cell=(2, 2, 2, 2, 2, 2)/pred covb;
run;

3
7
1
15

o= OO0 OoC
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sensitivity analysis by performing the analysis with different choices
of the constant. For Table 2, adding a constant of 0.01 to the empty
cells gave a WLS item effect estimate of 3.31 (asymptotic SE = 0.32),
whereas adding 0.1 gave an estimate of 3.65 (asymptotic SE = 0.35).
When the estimate is unstable, it often helps to fit the model only to
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the r — 1 constraints in (12) for which a = b (McCullagh 1977), for
which there is less of a tendency to have zero quadrant counts. (One
would do this using the SAS code in Table 10 by deleting the last three
rows and the last 12 columns of the C matrix, the last 12 rows of the
A matrix, and the last three elements in the X matrix specified in the
model statement; one then gets an estimate of 3.99, with asymptotic
SE = 0.41.) When the cell counts are large, the WLS estimate and its
standard error are nearly identical to those obtained using con-
strained ML.

Similar substantive results occur in using the adjacent-categories-
logit item effects model (8) for these data. The conditional ML
estimated effectis 2.628 (asymptotic SE = 0.353). The estimated effect
is smaller than with the cumulative logit model because the log-odds
ratio refers to adjacent response categories rather than the entire scale.
Therelated ordinal quasi-symmetry model fits well and also gives very
strong evidence that attitudes are much more conservative toward teen
sex than adult sex. Table 11 describes the fit of this and other models.
The ordinal models fit essentially as well as the general quasi-symmetry
model, but much better than the mutual independence or complete
symmetry models. Compared to general quasi-symmetry, they have
the advantage of simpler interpretation.

We now briefly discuss the cumulative logit model (10) for the case
of arbitrary 7. That model implies that for each fixed 4, the ordinary
Rasch model holds for a collapsing of the response into binary
outcomes (< h, > h). Thus, when the model holds, one can estimate
{B;} by obtaining item estimates for the Rasch model applied to the 2”
table corresponding to the collapsed binary response scale, for any 4
(e.g., one could do this by fitting the quasi-symmetry model to the 27
table). To obtain more efficient estimates, Agresti and Lang (1993)
suggested the following approach. Consider simultaneously the (r —
1) separate 27 contingency tables, in which the 4" table is the cross-
classification of responses for the 4* binary collapsing of the ordinal
response scale, A= 1, ... ,r— 1. They fitted the quasi-symmetry model
simultaneously to the r — 1 separate 27 tables. The proportional odds
assumption for model (10) implies that the same main effect parame-
ters apply to each of the (r — 1) quasi-symmetry submodels. Their
fitting process takes into account the dependence due to each table
classifying the same subjects. The process is based on maximizing a
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TABLE 11: Goodness of Fit of Models for Table 2

Model Likelihood-Ratio Statistic ~ Pearson Statistic df
Mutual independence 94.9 78.5 9
Complete symmetry 378.4 282.9 6
Ordinal quasi-symmetry 54 4.0 5
Cumulative logit 6.9 5.5 5
Quasi-symmetry 2.6 2.5 3

multinomial likelihood for the original r table, subject to the con-
straint that this form of quasi-symmetry model holds simultaneously
for each collapsed 27 table.

ANALYSIS OF ORDINAL MATCHED PAIRS

This section considers separately the special case of a bivariate
response (T = 2), which occurs for matched-pairs data. In this case,
quasi-symmetry models used to obtain subject-specific item estimates
have simple logit representations, and additional ways exist of getting
the estimates.

The ordinary quasi-symmetry model for 7= 2 is

lOg My = )\'l(a) + )"l(b) + )\’ab?

where A, = A,,. This has logit form

log{mg/my,} = B, - B,

for all @ and b, where B, = A, — ). The subject-specific logit model
(8) for adjacent categories relates to a special case (9) of the quasi-
symmetry model, for which this logit representation is especially
simple. Letting f§ = B, — B,, we have

log{m/my,} = B(b - a). (13)

In fact, we can also obtain the estimate of this effect using software
forlogistic regression models. We thentreat {n,,, a<b} as independent
binomial variates with sample sizes {n,, + n,,}. For the binary case
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(r=2), ﬁ = (n,/n,) is the resulting conditional ML estimate (Cox
1958) for the Rasch model.
Model (13) is a special case of a family of models satisfying

log{mg/m} =8, _,, (14)

discussed by Goodman (1979). Model (14) is called a diagonals-pa-
rameter symmetry model, and model (13) is called a linear diagonals-
parameter symmetry model (Agresti 1983). Given that model (13)
holds, marginal homogeneity is equivalent to symmetry, which is the
case 3 = 0. For ordinal responses, one can base simple tests of marginal
homogeneity on model (13). A Wald test uses as a test statistic the ratio
of B to its asymptotic standard error, which is a by-product of the
Newton-Raphson algorithm for fitting log-linear models. The likelihood-
ratio test uses the difference between the G statistics for the symmetry
model and model (13). Rao’s efficient score test is based on the
difference in sample means for the marginal distributions for equally
spaced category scores. Specifically, let {p;} denote the sample pro-
portions in the observed r X r table. One can form a z test statistic by
the ratio of d = [Z; i(p,, — p.;)] to its estimated standard error, which is
the square root of (1/n)[ZX,G — j)*p; — d°1.

For the cumulative logit model (10) with T = 2, it is possible to
construct a simple estimate of the item effect f = 8, — B, using the fact
that the model implies a Rasch model for each of the » — 1 collapsings
of the response to a binary variable. For each collapsing, we can use
the off-diagonal cells of the 2 X 2 table to get an estimate in the form
of the binary conditional ML estimate, log(n,,/n,). We can obtain a
nearly efficient estimator by combining these, adding the numerators
and adding the denominators before taking their ratio and their loga-
rithm (Agresti and Lang 1993). In terms of the cell counts in the full
r X r table, the resulting estimate of the effect is

E =log{[ DG - n VDG - pnyl}. 1)

i<j i>j
It is usually very similar to the constrained ML estimator, and often
more stable than the WLS estimator.
This estimator is simple to compute and intuitively appealing. The
numerator of the estimate weights each cell count above the main

Downloaded from smr.sagepub.com at UNIV OF FLORIDA Smathers Libraries on March 20, 2012


http://smr.sagepub.com/

Agresti / MODELS FOR COMPARING RESPONSES 91

diagonal by its distance from that diagonal, whereas the denominator
weights each cell count below the main diagonal by its distance. Its
estimated asymptotic variance equals

z:i<j(i_' l)zny + Zi>1(i_j)2nij (16)
= U= i)nij]2 [Z,,¢ _j)nij]Z.

V@) =

Applying these formulas to Table 2, we get an effect estimate of

F=lo ((34 +23 +38) + 2(72 + 38) + 3(109)

(@+0+1)+2(1+0)+3(0) )= 10g(642/7) = 4.519

and a variance estimate of

Y= B 23+38)+ 4(73 +38) +9(109)
(642)

LA+041)+4(1+0)+9(0)
?

=0.1874,

for which the asymptotic SE = 0.433. By comparison, the constrained
ML values are g: 4.465 and the asymptotic SE = 0.434.

We can base another simple Wald test of marginal homogeneity for
ordinal matched-pairs data on the ratio of ﬁ to its estimated standard
error. Like the test based on the ordinal quasi-symmetry model, it is
sensitive to location shifts in the marginal distributions. The likelihood-
ratio test uses the increase in the G* values between the fits of the
constrained model (12) corresponding to the cumulative logit model
and the simpler model (complete symmetry) with 3, — 8, = 0.

REMARKS

We have introduced two types of a quasi-symmetric log-linear
model for ordinal responses. One type implies that the ordinary
quasi-symmetry model for a 27 table holds for each of the (r — 1) pairs
of adjacent response categories, with the same main effect parameters
applying to each pair. The other type implies that the ordinary quasi-
symmetry model for a 27 table holds for each of the (r — 1) binary
collapsings of the response, again with the same main effect parame-
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ters applying to each collapsing. By fitting the models, one can obtain
item estimates for subject-specific ordinal logit models. Specifically,
we have shown that main effect parameters for quasi-symmetric
models relate to meaningful odds ratios for comparing marginal
distributions in subject-specific models.

A factor that can influence the choice of ordinal model relates to
whether one prefers odds-ratio interpretations referring to the entire
response scale (as in the cumulative logit model) or to pairs of
categories (as in the adjacent-categories logit). The cumulative logit
model has the advantage of a natural connection to a model for an
underlying continuous response, with the same item effects no matter
how one collapses that response into discrete categories (McCullagh
1977). Samejima (1969), Andrich (1978), Masters (1982), Duncan
(1984), and Tutz (1990) described closely related types of subject-
specific models for ordinal responses.

One can extend the models to incorporate covariates. For instance,
one might stratify a sample by gender and analyze whether the same
item effects apply to men and women. One could do this by comparing
the fits of two models, one assuming homogeneous item effects and
the other permitting heterogeneous item effects. The related quasi-
symmetry models also have homogeneous or heterogeneous main
effects, with the symmetric interaction term having different parame-
ters for each gender. Agresti (1993b) gave examples of this type and
illustrated the use of GLIM and SAS for fitting the models. There is
need for further work on marginal ML solutions for the ordinal models.
It remains to be seen whether results of Lindsay et al. (1991) about
connections between nonparametric marginal ML and conditional ML
estimates for the binary case generalize to ordinal responses.

When the subject parameter is assumed to be identical for all
subjects (i.e., there is no subject heterogeneity), the logit models
discussed in this article also describe population-averaged effects.
Such effects relate to the response of a randomly selected subject on
one item, relative to the response of another randomly selected subject
on another item. In general, though, if a subject-specific model holds
of logistic form, the implied population-averaged model for the mar-
ginal distributions is not necessarily of logistic form. When there is
subject heterogeneity, estimated effects in population-averaged mod-
els are usually weaker than estimated effects in subject-specific mod-
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els (see Neuhaus, Kalbfleisch, and Hauck 1991 for discussion of this
issue).

Parameters in population-averaged models describe differences
between marginal distributions purely in terms of the marginal prob-
abilities. By contrast, parameters in subject-specific models describe
differences in a way that directly incorporates the parametric form for
the dependence of the responses in the joint distribution. In our
models, for instance, the marginal structure is implied by the quasi-
symmetric structure of the joint distribution. For an example of the
population-averaged approach, see Becker (1994).

The subject-specific models we have discussed are rather simplis-
tic, and the related quasi-symmetry models will fit well in a limited
range of situations. Even when quasi-symmetric models show lack of
fit, however, they usually fit much better than complete symmetry or
mutual independence models. They may fit poorly if there are severe
violations of the local independence assumption, or the assumption
that each item effect is the same for every subject. The first of these
violations may happen for repeated measurement of an item over time,
whereby there is some residual dependence between observations
nearby intime (Conaway 1989, 1992). Violations of the latter assump-
tion sometimes occur when marginal distributions show differences
in dispersion as well as location. Nevertheless, the models address
components of relationships not analyzed by standard log-linear
analyses of associations. In practice, they should often provide useful
comparisons of response distributions for items of a similar nature.
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