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 Generalized Odds Ratios for Ordinal Dats

 Alan Agresti

 Department of Statistics, University of Florida, Gainesville, Florida 32611, U.S.A.

 SUMMARY

 We consider properties of the ordinal measure of association defined by the ratio of the proportions

 of concordant and discordant pairs. For 2 x 2 cross-classification tables, the measure simplifies to the

 odds ratio. The generalized measure can be used to summarize the difference between two
 stochastically ordered distributions of an ordinal categorical variable. The ratio of its values for two
 groups constitutes an odds ratio defined in terms of pairs of observations. Unlike the odds ratio

 measures proposed by Clayton (1974, Bionxetrika 61, 525-531) for similar purposes, this measure is
 not linked to specific model assumptions and hence it is more widely applicable as a descriptive

 measure.

 1. Introduction

 In many biological and medical applications, response variables are measured on categori-

 cal scales having ordered, though non-numerically valued, levels. Clayton ( 1974) has

 proposed some statistics based on odds ratios, which are designed to summarize the

 difference in location between two distributions of an ordinal categorical variable. The

 statistics correspond to a logit model for the sets of cumulative proportions of the two

 distributions. He also has proposed generalizations of these statistics to describe associa-

 tion between two ordinal categorical variables.

 We consider a simpler generalization for ordinal data of the odds ratio, one that has

 wider applicability as a summary measure. For the bivariate ordinal case, this measure

 equals the ratio of the proportions of concordant and discordant pairs. For comparing the

 distributions of two random variables, Y1 and Y2, it estimates pr ( Y2 > Y1)/pr ( Y1 > Y2).

 The ratio of its values for two groups constitutes an odds ratio defined in terms of pairs of

 observations. These statistics have simple interpretations and are also well-defined for

 continuous variables. They can be used to summarize the extent to which bivariate

 relationships are monotonic or the extent to which one ordinal distribution tends to

 exceed another one. Unlike Clayton, whose inferential emphasis was on testing hypoth-

 eses (and hence on stating approximate null distributions) for a particular model, we

 concentrate on interval estimation (and hence on stating approximate non-null distribu-

 tions) for these measures.

 2. Clayton's Statistics

 Consider first the comparison of two distributions of an ordinal categorical variable. For

 the ith distribution, let Pi; be the conditional probability concentrated in the jth category

 of the ordinal variable, j= 1, 2, . . ., c. Let

 k k

 Flk= E Plj, F2k= E P2j, k=l,...,c,
 j=l j=l

 59
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 60  Biometrics, March 1980

 represent the two distribution functions. Clayton's statistics refer to the model

 1 F -01 2F ' k = 1, . . ., c-1. (2.1)

 That is, Clayton assumed equality of the c- 1 odds ratios {Flk(l-F2k)1F2k(l-Flk)v

 k = 1, . . ., c - 1} obtained for the 2 x 2 tables corresponding to all possible dichotomiza-

 tions of the dependent variable. Notice that log 0 is the difTerence between the distribu-

 tions on a logistic scale. For this model, Clayton considered estimation of 0 and log 0

 based on independent random samples from the two distributions. His estimators of log 0

 are weighted averages of the c-1 log sample odds ratios and pooled estimators, the

 weights being chosen to minimize the asymptotic variances of the estimators in the

 neighbourhood of 0= 1. Clayton (1976) also generalized these estimators for the case in

 which some observations are subject to censorship. McCullagh (1977) proposed a related

 model for which log 0 is estimated using paired comparisons on the ordinal variable.

 The parameter 0 is a simple measure for comparing the two distributions if model (2.1)

 is at least approximately accurate. However, the fit provided by this model can be very

 crude even if the categorical distributions are based on underlying distributions difTering

 only by a shift in location. Fleiss (1970) showed that if two groups have the distributions

 N(l, C2) and N(y2, C2), and if several 2 x 2 tables are formed by dichotomizing the

 combined populations at various points, then the odds ratio is very unstable compared to

 other measures for 2x2 tables. For example, if 2-F1=ffv the value of the odds ratio

 ranges between 5.02 and 10.16 as the dichotomization varies from (0.50,0.50) to

 (0.95,0.05) for the combined populations.

 Clayton (1974) generalized his estimates of 0 to the case of two ordinal categorical

 variables, the joint distribution of which forms a r x c cross-classification table. The

 generalized statistics are based on a model which assumes the existence of a common odds

 ratio 0 for all (r - l)(c - 1) possible ways of collapsing the table into a 2 x 2 table. Clayton

 developed estimates of log 0, such as weighted averages of the (r- l)(c- 1) sample log

 odds ratios. The constant odds ratio assumption is a natural one for a bivariate model in

 which this statistic is stable, such as for the family of bivariate distributions proposed by

 Plackett (1965). However, it is badly violated for many other bivariate distributions. For

 the case of an underlying bivariate normal distribution, for example, Mosteller (1968)

 showed that the value of the odds ratio is highly dependent on the points of dichotomiza-

 tion for the 2x2 table unless the correlation is quite close to zero. When p=0.75, the

 odds ratio varies between 11.2 and 200.8 for the dichotomizations considered by

 Mosteller. As another illustration, Table 2 lists the values of the odds ratio for all

 possible 2x2 condensations of the 4x4 cross classification describing quality of left and

 right eyesight given for men and for women in Table 1. The odds ratio varies from 4.75

 to 44.05 for women and from 6.43 to 30.00 for men.

 3. Another Generalization of the Odds Ratio

 We now suggest an alternative generalization of the odds ratio for the comparison of two

 groups on an ordinal scale and for the measurement of ordinal association. It is similar in

 nature to Clayton's generalizations in the sense that it is a single summary measure which

 simplifies to the odds ratio in the 2 x 2 case. However, it is proposed in a different spirit

 since it is not linked to a specific model and hence it does not assume a constant odds ratio

 for all 2 x 2 condensations of the table. In this respect it is similar to measures of

 association proposed by Goodman and Kruskal (1954). We will define our proposed
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 Table 1

 Unuicled clistanee vision; from Stuart (1953)
 , l; , . . .

 Cirade of left eye

 Sex Grade of right eye
 Highest Second Third Lowest

 Highest 1520 266 124 66

 Second 234 1512 432 78
 Women Third 117 362 1772 205

 Lowest 36 82 179 492

 Highest 821 112 85 35

 M n Second 116 494 145 27
 e Third 72 151 583 87

 Lowest 43 34 106 331
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 generalization for the case of a cross-classification table for ordinal variables and then con-

 sider its specialized use for comparing two distributions of an ordinal categorical variable.

 Consider the r x c table of probabilities representing the joint distribution of two

 ordinal categorical variables. Let PC denote the probability that a randomly selected pair

 of members is concordant and let Pd denote the probability of discordance. The ratio

 oe PC/Pd (3.1)

 is an easily interpretable ordinal measure of association which describes the extent to

 which there is a monotonic increasing or decreasing relationship. Letting Pij denote the

 probability that a member is classified in row i and column j, we have

 °e = E Pij(l ) jE Pij(ll', (3.2)
 i.i i.i

 where

 (i) = E E Pi j + E E Pi j
 i ,i j ,j itci jtcj

 and

 Rij = E E Pi j + E E Pi j
 i ,i jtcj itci jr>j

 For the special case of a 2 x 2 table, Pc = 2pilp22 and Pd = 2pl2p2l, so that oe =

 PllP22/P12P21 Thus oe, which is defined to be the odds of selecting a concordant pair

 relative to selecting a discordant pair, is a generalization of the odds ratio. Clearly,

 O S cY S GO with cY = 1 if, but not only if, the variables are independent. By analogy with the

 log odds ratio that is often used with 2x 2 tables, log cY is a useful related measure. It is

 symmetric around the independence value of zero, in the sense that a reversal of the

 positions of PC and Pd (such as occurs in reversing the order of the levels of one of the

 variables) results in a change in its sign. The magnitude of log oe is not as easily

 interpretable as that of oe, but the distribution of its sample version tends to be more

 symmetric and to converge to normality faster than the distribution of the sample version of

 oe. Neither oe nor log oe makes a distinction between response and explanatory variables.

 Several measures of association have been formulated to generalize Kendall's tau for

 use with cross-classification tables having ordered rows and ordered columns. One of the

 most commonly used of these is 7 = (Pc - Pd)/(PC + Pd), proposed by Goodman and
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 62  Biometrics, March 1980

 Kruskal (1954). The quantity oe is simply the monotonic transformation of gamma:
 a = (1 + 7)/(1 - 7).
 A random sample version of oe is given by

 PclPd E Pij(l; ) / E Pij(d)
 ij ij

 in which the {Pij} in oe are replaced by the sample proportions {Pij}. When O<oe<°c, the
 asymptotic distribution of oe under random sampling may be easily obtained using the
 'delta method' outlined by Goodman and Kruskal (1972). Namely, (oe-oe)/(n tends in

 distribution to N(0, 1) as n Ocv where

 n(w = 4{ E Pij (o! ,, R [, ) } /Pd. (3.4)

 The z statistic based on oe for testing independence is asymptotically equivalent to a z
 statistic based on Kendall's tau. To see this, note that (oe - l)A/n = (pc -Pd)/n/Pd, which
 has the same asymptotic distribution as does (pc - Pd)A/n/Pd. Thus, z = (oe - 1)/(J is
 asymptotically equivalent in distribution to (pc - Pd)/(JC_D, where (JC-D= Pd(J- It follows
 from Simon (1978) that oe has the same efficacy as all ordinal measures of association
 having PC-Pd as a numerator, and thus it is locally as efficient as those measures at
 detecting departures from independence.

 4. Comparison of Two Distributions of an Ordinal Variable
 We now apply this method to the problem considered by Clayton (1974) of comparing
 two distributions of an ordinal categorical variable. For the case of a 2 x c table, oe reduces
 to

 °t = E PliP2jj E PliP2j = E PliP2jj E PliP2j (4. 1) j,i jci j,i jci

 Let Yl and Y2 be independent random variables having distributions {Pli} and {P2i},
 respectively. Notice that oe can be expressed as

 oe = pr ( Y2 > Yl)/pr ( Y1 > Y2). (4.2)

 If Y2 is stochastically larger then Y1 (i.e. F^k sF1k for all k) then it is easily seen that
 oe > 1. Generally, oe provides a summary measure of the extent to which the distribution of
 Y2 falls above that of Y1. In this case, for a random sample of size n or independent
 random samples of sizes n1 and n2 (with nl+n2=n), (a-oe)/(n tends in distribution to

 N(0, 1) as n oo, where

 72= i(l/nl) E Plj( E P2, - E F2i) +(l/n2) E P2j(°t E Pli - L Pl,) t j( E Pl,P2j)
 (4.3)

 and the {Pij} are the sample analogs of the {Pij}. In either of the settings we have discussed,
 the variance of log oe can be estimated for large samples by (J2/Ct2. Thus, we can exploit
 the faster convergence of logoe to normality by forming the large-sample 100(1-p)%
 confidence interval logoeztZpX2(X/oe for logoe [where Zp/2 iS the 100(p/2)th percentile of
 the standard normal distribution] and then exponentiating to obtain a corresponding
 confidence interval for oe.

 The ratio pr(Y2>Y1)/pr(Yl>Y2) is also a simple descriptive measure for comparing
 two ordinal categorical distributions when matched pairs are selected from the two

This content downloaded from 128.227.159.206 on Tue, 20 Dec 2016 15:49:52 UTC
All use subject to http://about.jstor.org/terms



 Odds Ratios for Ordinal Data  63

 distributions. Letting qij denote the proportion of matched pairs fol^ wllicll the observation

 from the first distribution falls in the ith category and the observation from the second

 distribution falls in the jth category? we have the analogous measule

 ( . < j ) / ( . i ( 4 * 4)

 The estimated asymptotic variance of oe'>/n for a random sample of v1 pairs is

 (t (1- qii)/( qij) (4.5)

 Of course, the sign test for paired comparisons is basically a test of whether oe'= l.

 5. Comparing and Pooling Alphas

 Consider now a three-dimensional table which consists of k layers of Z x c tables having

 ordered columns and (if r>2) ordered rows. The k layers might represent k levels of a

 nominal or ordinal control variable? or perhaps all combinations of levels of a set of

 control variables. In many studies, researchers are interested in comparing the two-way

 associations of these k layers. Let cv1, . . ., (Xk denote the values of oe within these k layers.

 A simple summary comparison measure for a particular pair of layers is aJa; or

 alternatively its logarithm. The ratio cxJcxj is an odds ratio for pairs: namely, the odds in

 the ith layer of selecting a concordant pair relative to selecting a discordant pair divided

 by the odds in the ith layer of selecting a concordant pair relative to selecting a discordant

 pair. When r= c = 2, OtiloGj simplifies to the ratio of the odds ratios from the two layers, the

 standard measure of interaction for a three-dimensional table.

 If independent random samples are selected from the k layers then the variance of

 log (OGJOGj) can be approximated for large samples by

 52 = ((Ji2/of i2) + ((7j 1°ti ), (5. l)

 where (ni2 and (Jj2 are the values of (J2 obtained from (3.4) evaluated for the ith and jth

 layers. For testing a general hypothesis Ho: °e1 = °g2 = * * * = °Ek of equal association across

 the k layers we can use the statistic

 E {°e i2(10g °ti-L)2/(ni2}, (5 .2)
 i = 1

 where L =i (oei2 log ogJ(r9)/i (oei2/(ri2). If independent random samples are selected from

 the layers then, as the ni > cO, this statistic is approximately distributed as x2 with k 1

 degrees of freedom under the null hypothesis. For large samples

 k

 E {(°ti - 0t)21(72}, (5.3)
 i=l

 where oe =i (ogJ(ri2)/i (l/vi2), will have approximately the same distribution, though

 convergence may be faster with the first statistic due to the tendency for faster con-

 vergence to normality of the log ai. If Ho: a1 = a2= * * * = °Ek iS not rejected, one may wish

 to pool the {log ai} in order_to obtain a better estimate of the assumed common value of

 logoe or oe. The measure L, which approximates the weighted average of the {logoei}

 having smallest variance under this assumption7 is asymptotically normally distributed

 around log oe with estimated asymptotic variance ( °ei2/(ni2)-l. Also, if we expect the
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 64  Biometrics, March 1980

 {log oei} to have the same sign we can use this distribution to test the null hypothesis

 Ho: °e1 = °t2 = * * * = °tk = 1 of no partial association.

 6. Alpha for Continuous Variables

 If two ordinal or higher-level variables are continuous, or if one variable is continuous and

 the other is discrete, a is still a meaningful summary measure. When both variables are

 continuous, for example, PC + Pd = 1, and oe is related to Kendall's tau by oe =

 (1 + z)/(1- ). Since the random sample version T of tau is asymptotically normally

 distributed, it follows that (a - a)ln/+l{lim var (cxAln)} tends in distribution to N(0, 1) when

 0 < ae < cO. Using expression (10.9) of Noether (1967, p.74) for var {n(n - 1)T/2}, we

 obtain

 limm var ((:xaln) = lim var (T+/n)/4(1- Pc)4 = 4(PCC - P2)/(1- Pc)4 (6.1)

 Here PCC is the probability that for a random sample of three members, the first forms a

 concordant pair both when matched with the second and when matched with the third.

 For a bivariate normal distribution, oe =(7r+2sin-l p)/(7r-2sin-l p), and it follows from

 the expression given by Kendall (1970, p. 126) for the variance of T in this case that

 lim Var (aAln) = {9-(-sin-l 2p) }! ( 2 P) (6.2)

 For comparing the distributions of two independent continuous random variables,

 oe=pr(Y2>Y1)/{l-pr(Y2>Yl)}. Now let Y1 and Y1 represent independent random

 variables having the first distribution and let Y2 and Y2 represent independent

 random variables having the second distribution. Let P21 = pr ( Y2 > Y1), P221 =

 pr (Y1 < Y2, Y1 < Y2), P21l = pr (Y1 < Y2, Y1 < Y2) and suppose that random samples of

 sizes n1 = w1n and n2 = w2n (with w1 + w2 = 1) are selected from the two distributions. It

 follows from the asymptotic normality of the Mann-Whitney statistic, U=number of

 pairs for which Y2> Y1, that the sample version oe of oe is asymptotically normally

 distributed with

 lim var (oealn) = (X2l/(1-P21), (6.3)

 where (X21 = lim var (P21>ln). Since the sample version P21 of P21 is simply U/nln2,

 from (2.21) in Lehmann (1975, p. 70) we obtain

 (721 = (P221-P21)/W1 + (P211-P21)/W2- (6.4)

 7. Examples

 We conclude with two examples. The first of these illustrates the use of oe for measuring

 association in cross classifications of ordinal variables and for summarizing paired com-

 parisons on an ordinal response. In the second example, a is applied as a measure of the

 difference between two ordinal categorical distributions for independent samples.

 The data in Table 1 were first presented by Stuart (1953). As shown in Table 2, the

 odds ratio for the nine subtables of both the cross classification for men and the cross

 classification for women is very unstable, sufficiently so to make Clayton's model for ordinal

 association inappropriate. For the 7477 women in the sample, there were 14940 643

 concordant pairs and 1 676 387 discordant pairs so that cv1= 8.912. That is, there were
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 Table 2

 Odds ratio for all condenst7tions of cross classifications ot Ttlble 1
 into 2x 2 tables

 Column before cut

 Sex Row before cut

 Highest Second Third

 Highest 44.05 12.67 4.75

 Women Second 14.30 22.38 7.77
 Third 8.12 8.52 30.09

 Highest 30.00 10.93 7.42
 Men Second 11.72 19.50 12.09

 Third 6.43 10.42 31.31

 8.912 times as many pairs of women for which the one with better right eye has better left

 eye than there are pairs for which the one with better right eye has poorer left eye. The

 estimated non-null variance of °el is, from (3.4), (J2= 1164.1/7477 = 0.156 and an

 approximate 95°/O confidence interval for °el is 8.91+1.96lO.156 or (8.14 9.68). Simi-

 larly, lo} °e1 = 2.187 has estimated standard error {1164.1/(8.912)27477}1/2 = 0.044 which

 leads to the approximate 95°/O confidence interval (2.100, 2.274) for logoe and, exponen-

 tiating, (8.17,9.72) for oe. The two approaches yield very similar results in the confidence

 interval for oe in this case, due to the very large sample size. For the men in the sample,

 (X2 = 7.917 and an approximate 95°/O confidence interval for (X2, using the asymptotic

 normality of log oe2, is (7.02,8.94).

 We can compare the associations for the two sexes using the statistic °e1/°e2= 1.126.

 That is, the sample ratio of concordant to discordant pairs was 1.126 times greater for

 women than for men. The estimated standard error of log (°e1/°e^) = 0.1187 is

 {0.156/(8.91)2 + 0.239/(7.92)2}1/2 = 0.076 which yields an approximate 95°/O confidence

 interval of (-0.030, 0.268) for log (°e1/°e2) and (0.97, 1.31) for a1/°e2. Hence there is an

 insignificant difference in the values. The pooled estimate of a common value of log a is

 L = 2.147 which has an estimated standard error of 0.036.

 For Wable 1, one might also be interested in comparing the marginal distributions of

 Y1 = grade of right eye and Y2 = grade of left eye. This can be done by viewing Table 1 as

 the result of a sample of paired comparisons and by estimating a ' =

 pr (Y2> Y1)/pr (Yl > Y2). We obtain '= 1.159 for women7 with log ' = 0.148 having an

 approximate standard error of 0.043. In other words there were 1.159 times as many

 women having better left eye than there were having better right eye, and this diiderence

 from 1.0 attains significance at the commonly-used levels. For men, however, we obtain

 ' = 0.941, with log ' = -0.061 having an approximate standard error of 0.063, so that

 right eye and left eye qualities are not significantly different for that sex. McCullagh

 (1978) proposed several models for square contingency tables having ordered categories.

 Our summary measures are consistent with the conclusions made using his models.

 Clayton (1974) used the frequencies in Table 3 [originally presented by Holmes and

 Williams (1954)] relating tonsil size for two groups of children to illustrate his estimates of

 0. If we consider all carrier-noncarrier pairs in that table, there are 19(560 + 269) +

 29(269) = 23 552 pairs for which the noncarriers have larger tonsils and 39 781 pairs for

 which the carriers have the larger tonsils. Hence a = 39 781/23 552= 1.69, compared to

 Clayton's estimates for 0 of 1.78 and 1.77. The interpretation of a is very simple; namely,
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 Table 3

 size of tonsils of carriers asld Floncclrriets of Stleptococcus pyogenes; tclble
 analyzed in Clayton (1974)

 . _ . . , . . .s a

 Tonsils presentX Tonsils Tonsils

 but not enlarged enlarged greatly enlarged

 Noncarriers 497 560 269

 Carriers 19 29 24

 there are 1.69 times as many carrier-noncarrier pairs in the sample for which the carrier

 has the larger tonsils as there are pairs for which the noncarriel- has the larger toTlsils.

 From (4.3), the estimated variance of oe is (XX = 0.121 and hence the estimated standard

 error of log og is +/0.121/1.69= 0.206. An approximate 95% confidellce interval for log oe

 is log (1.69)i1.96(0.206) or (0.120, 0.928) which yields the interval (1.13, 2.53) for a.

 8. Conclusioll

 The measures presented in this paper are generalizations of the odds ratio for ordinal

 data. The measure a summarizes the extent to which a bivariate ordinal association is

 monotonic in nature and it also naturally sulllmarizes the difference between two

 distributions of an ordinal variable when one is stochastically larger than the other. Of

 course, it is desirable to find a parsimonious model such as one assuming a constallt

 diflerence in logits or a complementary log model (as developed by P. McCullagh in an

 unpublished report: Technical Report No. 83, Department of Statistics, University of

 Chicago, 1979), which can provide a reasonable fit to the data, particularly if the model is

 uleaningful theoretically. We feel that, in the manifestations explored in this article, oe

 complements such models even when they do fit well, particularly sillce it is so easily

 interpretable. It is easy for a researcher to understand a conclusion such as SConsidering

 all pairs of patients for which one received treatment A and one received treatment B?

 there are oe =2.6 times as many pairs for which treatment A results in better recovery

 than there are pairs for which treatmenl B results in better recovery'.

 Although we have presented oe solely as a summary descriptive measure it could also

 be used as the basis of a model defined for an ordinal dependent variable by utilizing pair

 scores. For example, let oe(xl, x) be the value of oe for pairs of members having the values

 xl and x2 on an independent variable X. We could model oe(xl, x2)= oe(d) as depending

 only on the distance d=x1-x2 between thc members on X. For examplc, the model

 log a(d)= 13d is a linear logistic model for the probability tllat an untied pair of

 observations is concordant; see Schollenberger et (ll. (1979) for details. Of course, in many

 applications it is also important to study more specific measures such as relative risks for

 certain levels of the response variable.

 RESUME

 Nous considerons les proprietes de la mesure ordinale d'association definie par 12 l apport des

 proportions des paires concordantes et discordantes. Poul des tableaux de classification croisee

 2x2, la mesure se ramene au rapport des paris. La mesure generalisee peut etre utilisee pcour

 resumer la difference entre deux distributions stochastiques classees dFune variable categorielle

 ordinale. Le rapport de ses valeurs pour deux groupes constitue un rapport de pari defini en

 fonction des paires d90bservations. A la difference de la mesure de rapport de pari proposee par

 Clayton (1974, Biometrika 61, 525-531) pOUl des objectifs similaires, cette mesure n'est pas liee a des

 hypotheses sur un modele specifique, et donc il est plus largement applicable comme ulle naesure

 descriptive.
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