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Statistical Science 
1992, Vol. 7, No. 1, 131-177 

A Survey of Exact Inference 
for Contingency Tables 
Alan Agresti 

Abstract. The past decade has seen substantial research on exact infer- 
ence for contingency tables, both in terms of developing new analyses 
and developing efficient algorithms for computations. Coupled with 
concomitant improvements in computer power, this research has re- 
sulted in a greater variety of exact procedures becoming feasible for 
practical use and a considerable increase in the size of data sets to 
which the procedures can be applied. For some basic analyses of contin- 
gency tables, it is unnecessary to use large-sample approximations to 
sampling distributions when their adequacy is in doubt. This article 
surveys the current theoretical and computational developments of 
exact methods for contingency tables. Primary attention is given to the 
exact conditional approach, which eliminates nuisance parameters by 
conditioning on their sufficient statistics. The presentation of various 
exact inferences is unified by expressing them in terms of parameters 
and their sufficient statistics in loglinear models. Exact approaches for 
many inferences are not yet addressed in the literature, particularly for 
multidimensional contingency tables, and this article also suggests 
additional research for the next decade that would make exact methods 
yet more widely applicable. 

Key words and phrases: Categorical data, chi-squared tests, computa- 
tional algorithms, conditional inference, Fisher's exact test, logistic 
regression, loglinear models, odds ratios, sufficient statistics. 
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1. INTRODUCTION 

This article surveys the development of exact 
inferential methods for contingency tables. I inter- 
relate various inferences by expressing them in 
terms of parameters in a hierarchy of loglinear 
models. The presentation focuses primarily on 
exact conditional methods, in which one obtains 
sampling distributions not dependent on other 
unknown parameters by conditioning on their 
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sufficient statistics. I also discuss some long-stand- 
ing controversies for such methods and present 
topics for additional research that should soon be 
feasible given the continual improvement in com- 
puter hardware and software. 

1.1 Historical Perspective 

Traditionally, statistical inference for contin- 
gency tables has relied heavily on large-sample 
approximations for sampling distributions of pa- 
rameter estimators and test statistics. Many of 
these approximations are special cases of ones that 
apply more generally than to categorical data [e.g., 
chi-squared approximations for likelihood-ratio 
statistics and normal approximations for maximum 
likelihood (ML) estimators of model parameters]. 
With this emphasis on large-sample methods, the 
development of inferential methods for categorical 
data parallels the historically earlier development 
of inferential methods for continuous data. For in- 
stance, E. S. Pearson's recently published manu- 
script about Student notes that studies analyzed by 
Karl Pearson's laboratory usually involved large- 
size data sets. When Gosset presented his queries 
about small samples that led to his development of 
techniques using the t-distribution, Pearson replied, 
"Only naughty brewers deal in small samples" 
(Pearson, 1990, page 73). 

R. A. Fisher's Statistical Methods for Research 
Workers was at the forefront of advocating exact 
procedures for small samples. In the preface of the 
first edition of that book (1925), Fisher stated, 
" .. . the traditional machinery of statistical pro- 
cesses is wholly unsuited to the needs of practical 
research. Not only does it take a cannon to shoot a 
sparrow, but it misses the sparrow! The elaborate 
mechanism built on the theory of infinitely large 
samples is not accurate enough for simple labora- 
tory data. Only by systematically tackling small 
sample problems on their merits does it seem possi- 
ble to apply accurate tests to practical data." Not 
surprisingly, t-procedures received strong emphasis 
ii that text, and "Fisher's exact test" for 2 x 2 
contingency tables appeared in the 1934 and 
subsequent editions. 

The importance of improving the scope of exact 
methods for categorical data has become increas- 
ingly clear in recent years. Standard asymptotic 
methods apply to a fixed number of cells, as cell 
expected frequencies grow to infinlity. Yet, re- 
searchers often attempt to anialyze additional vari- 
ables as the sample size grows; thus, large expected 
frequencies may be the exception rather than the 
norm. Although recent research has introduced new 
asymptotic approaches that permit the number of 
cells to grow as the sample size grows (e.g., Morris, 

1975; Haberman, 1977; Koehler, 1986; McCullagh, 
1986; Zelterman, 1987), information on the ade- 
quacy of these approximations for standard models 
is at an infant stage. [Cressie and Read (1989) 
surveyed research on the adequacy of various 
asymptotic approximations.] Also, simulation stud- 
ies have shown that it is hopeless to expect simple 
guidelines to indicate when asymptotic large-sam- 
ple approximations are adequate (e.g., Koehler and 
Larntz, 1980). Even when the sample size is quite 
large, recent work has shown that large-sample 
approximations can be very poor when the contin- 
gency table contains both small and large expected 
frequencies (Haberman, 1988). Regarding ade- 
quacy of asymptotics, the sample size n often has 
less relevance than the discreteness of the sam- 
pling distribution. Thus, "small-sample methods" 
for categorical data more accurately refer to 
methods needed when there are few points or rela- 
tively large probabilities in the support of that 
distribution. 

Table 1, taken from Graubard and Korn (1987), 
illustrates that different statistics and approxima- 
tions can give quite different results, even for very 
large samples. That table, which refers to a 
prospective study of maternal drinking and congen- 
ital malformations, has 32,574 observations. For 
testing independence of alcohol consumption and 
malformation, asymptotic chi-squared tests give p- 
values of 0.017 using the Pearson statistic and 
0.190 using the likelihood-ratio statistic. Exact tests 
of a type discussed in Section 3.1 using these crite- 
ria give p-values of 0.034 and 0.139, respectively. 
A test based on a trend alternative that utilizes the 
ordering of column categories by assigning scores 
(0,0.5, 1.5,4,7) to them has exact p-value more 
than three times the p-value based on an asymp- 
totic normal approximation (0.017 versus 0.005 in 
the one-sided case). 

The lag in the development and use of exact 
inferences for contingency tables is partly ex- 
plained by the later development of methods for 
categorical data compared with continuous data, 
but also by the greater computational complexity. 
However, recent advances in computational power 

TABLE 1 
Maternal drinking and congenital malformations 

Alcohol consumption 
(average no. of drinks/day) 

Malformation 0 < 1 1-2 3-5 ? 6 

Absent 17,066 14,464 788 126 37 
Present 48 38 5 1 1 

Source: Graubard and Korn (1987). 
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and efficiency of algorithms have made exact meth- 
ods feasible for a wider variety of inferential analy- 
ses and for a larger collection of table sizes and 
sample sizes. In this survey of exact inferences for 
contingency tables, I indicate which computations 
can currently be done and also highlight areas in 
which current capabilities are inadequate. 

1.2 Outline and Notation 

Sections 2 to 4 present a variety of exact methods 
for contingency tables in the context of loglinear 
models. Sections 2 and 3 focus on two-way tables, 
Section 2 for the 2 x 2 case and Section 3 for the 
I x J case. Section 4 focuses on three-way tables, 
with emphasis on the 2 x 2 x K case. Section 5 
discusses exact inference for logistic regression 
models, and Section 6 discusses exact goodness-of-fit 
testing for loglinear and logistic models. Section 7 
discusses computing feasibility of exact methods, 
using currently available software. 

Nearly all the literature on exact methods for 
contingency tables emphasizes hypothesis testing; 
but, in each section, I also indicate the scope 
of work on interval estimation. My discussion 
throughout the article takes the viewpoint of classi- 
cal frequentist conditional inference, with appli- 
cation to loglinear models for contingency tables. 
Section 8 mentions other approaches. It presents an 
unconditional approach to exact inference and also 
indicates how Bayesian inferences correspond to 
conditional inferences for certain choices of prior 
distributions. The final section discusses possible 
future directions for research on exact methods for 
contingency tables. 

Throughout the article, I assume a standard Pois- 
son or multinomial sampling model for cell counts 
in the contingency table. For instance, in an I x J 
table, the cell counts { nij} might have a multino- 
mial distribution generated by n independent tri- 
als with IJ cell probabilities { -rij}. Or, the counts 
{ nij, j = 1 ... ., J} in row i might have a multino- 
mial distribution, with counts in different rows 
being independent. In the first case ("full" multi- 
nomial sampling), n = EEnij is fixed. In the sec- 
ond case (independent multinomial sampling), 
{ni+= Ejnij, i = 1,... ,I} are fixed. When {nij} 
are independent Poisson random variables, con- 
ditioning on n yields full multinomial sampling; 
conditioning further on the row totals yields inde- 
pendent multinomial sampling. All sampling mod- 
els lead to the same exact inferences, since those 
inferences condition on marginal totals that con- 
tain as a subset the naturally fixed totals, and 
since the parameters of usual interest are not the 
proportions in the margins that are fixed under 
some sampling designs but not under others. 

For two-way contingency tables, let X denote the 
row classification and Y the column classification. 
For three-way tables, denote the third classification 
by Z. For simplicity, denote loglinear models by 
standard symbols pertaining to their minimal suffi- 
cient statistics. For instance, (X, Y) denotes the 
model of statistical independence in a two-way 
table, and (XZ, YZ) denotes the model of condi- 
tional independence between X and Y, given Z, in 
a three-way table. The minimal sufficient statistics 
are {ni+} and {n+j} for (X,Y) and {ni+k} and 
{ n+jk} for (XZ, YZ). Finally, denote expected fre- 
quencies by m and sample proportions by p, for 
example, {m i = E(n j)} and {pi1 = nij/n} in a 
two-way table. 

1.3 The Exact Conditional Approach 

Historically, the most common approach to exact 
inference in contingency tables has been a condi- 
tional one. Suppose an inference refers to a param- 
eter in some loglinear model. Exact conditional 
inferential methods utilize the distribution of the 
sufficient statistic for that parameter, conditional 
on sufficient statistics for the other parameters 
("nuisance" parameters) in the model. For in- 
stance, suppose one wants to test a hypothesis Ho 
that corresponds to a loglinear model symbolized by 
MO, under the assumption that a more general 
model M1 holds, corresponding to an alternative 
hypothesis H1. Denote minimal sufficient statistics 
for the models by To and T1. Exact inference uses 
the conditional distribution of T1 given To (e.g., 
Andersen, 1974). By the definition of sufficiency, 
the conditional distribution does not depend on the 
nuisance parameters, thus making exact inference 
possible. 

To illustrate, for Poisson sampling in a 2 x 2 
contingency table, the saturated loglinear model 
has the form 

(1.1) log mijj= + XxK + )J.'+ )tij (1.1) ~~~~~~~~~7 . 

The parameters { tij} describing association in this 
model pertain to the odds ratio. For instance, sup- 
pose we achieve identifiability by setting 4 = 4 = 
21 = 12 = 22 = 0. Then X1l =. log(O), where 0 de- 
notes the odds ratio, 0 = (m11m22)/(m12m20) The 
parameter set is (A, XX, )i', X1l), and normally inter- 
est focuses on 0 = exp(X1l), the others being nui- 
sance parameters. The sufficient statistics are n for 
i,, nj+ for XK, n+1 for Xi', and nll for X1l. To conduct 
exact inference about 0, consider the conditional 
distribution of n1l given n, n1+, and n+1. This 
conditional distribution is the same as the one 
having elements P(Y1 = n1l, Y2= n+1 - n1l I Y1 + 
Y.= n+1), where { Y, i = 1, 2} are indepen- 
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dent binomial random variables with parameters 
[ni+, mi1 /( mi1 + mi2)]. Straightforward calcu- 
lation shows that it equals 

f( n1llnjni+X n+1; -) 

(1.2) - ( )n+ - nll 

E ( U n+l - U) 

where the index of summation ranges from 
max(O, n1++ n+1 - n) to min(n1+, n+1), the possi- 
ble values for n1l for the given marginal totals. 
This is the noncentral hypergeometric distribution 
(Fisher, 1935a; Cornfield, 1956). 

To test statistical independence of X and Y [X1l 
= 0 in model (1.1)], one uses this distribution with 
0 = 1. Of course, to complete a test, one needs to 
specify a test statistic and the way to compute the 
p-value. In testing a loglinear model Mo against a 
more complex model M1, in this article I will gen- 
erally base p-values on the exact conditional distri- 
bution of Rao's efficient score statistic for testing 
that the extra parameters that are in M1 but not 
in Mo equal zero. The efficient score statistic is 
based on the vector of partial derivatives of the log 
likelihood with respect to the extra parameters, 
evaluated at the null estimates (Rao, 1973, Section 
6e). For testing independence in a 2 x 2 table, this 
suggests [n1l - (n1 + n+ +)/ n], suitably normalized, 
as a test statistic. 

The p-value, based on extreme values of the test 
statistic, is calculated using the distribution for 
that statistic that is induced by the exact condi- 
tional distribution of { nij}. When M1 contains one 
more parameter than MO, tests based on the effi- 
cient score statistic are uniformly most powerful 
unbiased (UMPU), as a consequence of a result for 
exponential families (e.g., Lehmann, 1986, Theo- 
rem 3, page 147). Denote the ML estimator of the 
parameters in M1 by (00, 01), where 01 denotes the 
estimator of the parameters that are in M1 but not 
in MO. For large samples with a fixed number of 
cells, these tests are asymptotically equivalent to 
Wald tests based on 01 and likelihood-ratio tests of 
Mo against M1 (Rao, 1973, pages 418-420). 

My reason for relating exact conditional infer- 
ence to loglinear models in this article is as 
follows. Loglinear models are generalized linear 
models for categorical data that use the canonical 
link, that is, they directly model the natural pa- 
rameter (the log mean) of a natural exponential 
family (the Poisson). Such generalized linear mod- 
els permit reduction of the data through sufficient 
statistics (McCullagh and Nelder, 1989, page 32). 
Thus, one can eliminate nuisance parameters in 

the model by conditioning on sufficient statistics 
for them. 

2. EXACT INFERENCE FOR 2 x 2 TABLES 

This simple case still generates an enormous vol- 
ume of publications, partly because of controversy 
(discussed in Section 8.1) about applying exact 
methods that condition on marginal totals that are 
not naturally fixed under Poisson, multinomial, or 
binomial sampling schemes. The most common 
sampling model for 2 x 2 tables is independent 
binomial sampling in the two rows. Denote the 
"success" probabilities by r1 and 72' for which the 
odds ratio is 0 = [ir1/(1 - r1)]/[ir2/(l - ir2)]. The 
hypothesis of homogeneity states that 7rl = 72. For 
Poisson or full multinomial sampling, conditioning 
on {1n1+, n2 +} gives binomial sampling, and statis- 
tical independence is equivalent to homogeneity. 
Under the hypothesis of homogeneity, conditioning 
as well on n+1 to eliminate the nuisance parameter 
(the common value of ir1 and ir2) yields the hyper- 
geometric distribution (1.2) with 0 = 1. 

2.1 Fisher's Exact Test 

Fisher's exact test (Fisher, 1934, 1935a; Yates, 
1934; Irwin, 1935) of Ho: 0 = 1 is "well known," 
and I refer the reader to Lehmann (1986, pages 
151-162) for details of its derivation under various 
sampling schemes. The null hypergeometric dis- 
tribution has E(n1l) = n1+n+1/n and Var(n1l) = 

1+n1+1n2+n1+2 /1 2(- 1). To test Ho: 0 = 1 
against H1: 0 > 1, the p-value is 

(2.1) P = E f(t n,n1+, n+1;1), 
s 

where S = {t: t > n1%}. The set S is identical to 
that of tables for which the sample odds ratio is at 
least as large as observed. 

The hypergeometric applies directly as a sam- 
pling model when both sets of marginal counts are 
naturally fixed. A classic example of this case is 
Fisher's (1935b) tea-tasting experiment, relating to 
a woman's claim to be able to judge whether tea or 
milk was poured in the cup first. The woman was 
given eight cups of tea, in four of which tea was 
poured first and in four of which milk was poured 
first, and was told to guess which four had tea 
added first. The contingency table for this design 
(see Table 2) has n = 8 and n1+= n+ 1 = 4; n1, can 
take values 0, 1,2,3,4 with corresponding one-sided 
p-values (for H1: 6 > 1) of 1.0, 0.986, 0.757, 0.243 
and 0.014. 

Ways of forming two-sided p-values in Fisher's 
exact test were discussed by Gibbons and Pratt 
(1975), Yates and discussants (1984), Davis (1986), 
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TABLE 2 
Fisher's tea-tasting experiment 

Guess poured first 
Poured first Milk Tea Total 

Milk 3 1 4 
Tea 1 3 4 

Total 4 4 8 

Dupont (1986), Mantel (1987), and Lloyd (1988a). 
The most popular approaches are (a) double 
the one-sided p-value, (b) (2.1) with S = {t: 
f(t I n, n1+, n+1) c f(n1l I n, n1+, n+1)}, and (c) (2.1) 
with S = { t: I t - E(n1j) I 2 I nll - E(n1j) I} . The 
third option is identical to the null probability that 
the Pearson chi-squared statistic is at least as large 
as observed. Different approaches can give differ- 
ent results because of the discreteness and poten- 
tial skewness of the hypergeometric distribution. 
For instance, consider the table having counts by 
row (10,90/20,80) (i.e., 10 and 90 in the first row, 
20 and 80 in the second), discussed by Dupont 
(1986). The null distribution of n1l is symmetric 
about 15, and the three p-values are identical and 
equal 0.073. However, for the nearly identical table 
(10,91/20,80), p-value (a) equals 0.069, whereas 
(b) and (c) equal 0.050. 

2.2 "Exact" Estimation in 2 x 2 Tables 

The non-null conditional distribution (1.2) of n1l 
is used in constructing "exact" confidence intervals 
for the odds ratio. For data n1l, the conditional ML 
estimate of 0 is th6 value of 0 that maximizes 
probability (1.2). The estimate is obtained using 
iterative methods (Cornfield, 1956), and differs from 
the unconditional ML estimate 0 = n1ln22 / nl2n21. 
For instance, for Fisher's tea-tasting data (Table 2), 
nll = 3 and the unconditional ML estimate is 9; the 
conditional ML estimate maximizes the conditional 
likelihood (1.2), 

1603/[1 + 160 + 3602 + 1603 + 04] 

and equals 6.41. 
For testing Ho: 0 = 00 against H1: 0 > 00, the 

p-value is P = E sf(t j n, n1+, n+1; 0 ), where S = 
{ t: t 2 n1l}. For testing against Ho: 0 < 00, S = { t: 
t c n1l}. One can obtain an "exact" confidence in- 
terval for 0 by inverting the test (Cornfield, 1956; 
Mantel and Hankey, 197f; Thomas, 1971). The 
lower endpoint is the 0 value for which P = a /2 
in testing Ho: 0 = 00 against H1: 0 > 00. The upper 
endpoint is the 0o value for which P = C /2 in 
testing Ho against H1: 0 < 0g. If n1l = 0, then the 
lower endpoint is 0, and one uses P = a in obtain- 

ing the upper endpoint; if n1l = min(n1+, n+1), then 
the upper endpoint is o, and one uses P = a in 
obtaining the lower endpoint. For the tea-tasting 
data, the 95% confidence interval obtained in this 
manner is (0.21, 626.2). 

The discreteness of the distribution of n1l limits 
the confidence intervals to a discrete set of possible 
endpoints, for fixed a. Thus, the true confldence 
coeffi1cient is at least 1 - ax, rather than exactly 
1 - at, and its value depends on the value of 0 
(Neyman, 1935). It is strictly greater than 1 - a 
unless the true 0 is an attainable endpoint. I use 
quotes around "exact" in referring to such inter- 
vals to reflect this behavior. 

Baptista and Pike (1977) described an alterna- 
tive approach that also guarantees the confidence 
level but sometimes gives slightly shorter inter- 
vals. Their interval is a generalization of Sterne's 
(1954) confidence interval for a single binomial 
parameter. One inverts a family of acceptance re- 
gions that are formed using the minimal number of 
most likely outcomes. Specifically, for each 00, one 
finds a set A(00) of possible n1l values such that 
the probability of the set is at least 1 - at and such 
that every integer in the set is at least as likely to 
occur as every integer outside the set. The confi- 
dence interval is the set of 00 values for which the 
observed n1l falls in A(00). 

It is not possible to construct "exact" confidence 
intervals for association measures that are not 
functions of the odds ratio. They do not occur as 
parameters in generalized linear models with Pois- 
son or binomial random component using canonical 
links. Thus, the usual conditioning arguments do 
not eliminate nuisance parameters. For instance, 
consider estimation of the difference of probabili- 
ties 6 = -rl - 7r2 for independent binomial samples. 
The joint sampling distribution can be expressed in 
terms of 6 and wr1, for instance, but conditioning on 
the marginal totals does not eliminate r1. Santner 
and Snell (1980) discussed this and other difficul- 
ties in interval estimation of the difference of pro- 
portions and the relative risk. They also described 
ways of getting conservative confidence intervals 
for these parameters, but the usual conservative- 
ness due to discreteness is compounded because of 
the approach used to eliminate the nuisance 
parameter. 

"Exact" interval estimates exist in certain ex- 
treme situations in which asymptotic interval esti- 
mates do not. Suppose the conditional inference 
uses the distribution of T1, given To. When T1 
assumes its maximum or minimum value, the un- 
conditional (or conditional) ML estimator of 0 and 
its asymptotic standard error do not exist (unless 
one adds some constant to the cells), but "exact" 
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one-sided confidence intervals do exist. For a point 
estimate in such cases, some authors (e.g., Hirji, 
Mehta and Patel, 1987, 1988; Hirji, Tsiatis and 
Mehta, 1989) use median unbiased estimates. To 
illustrate, for a 2 x 2 table, when n1l = 0, the ML 
estimator of the loglinear association parameter 
(the log odds ratio) and the ML estimator (Z 1/ nij) 
of the asymptotic variance of the ML estimator do 
not exist. The median unbiased estimate is the 00 
value that gives P 0.5 and the "exact" upper 
100(1 - a)% confidence limit is the 00 value that 
gives P = a, in testing against H1: 0 < 00. 

2.3 Comparing Dependent Proportions 

Next, consider the comparison of two proportions 
when each sample contains the same subjects, or 
the sample consists of matched pairs. For instance, 
one might have repeated measurement of a binary 
response at two occasions. Let ni be the number of 
observations in category i at occasion 1 and cate- 
gory j at occasion 2. Let irij denote the probability 
of response i at occasion 1 and response j at occa- 
sion 2, and let pij = nij / n. The sample proportions 
of "successes" p1+ at occasion 1 and p+1 at occa- 
sion 2 are dependent, rather than independent, 
because of the matching. The hypothesis of 
marginal homogeneity, Ho: 7r1+= 7r+ , corresponds 
to homogeneity for the 2 x 2 table consisting of the 
two marginal distributions. For binary responses, 
marginal homogeneity is equivalent to symmetry, 
712= r21 To obtain an exact test, one conditions 
on n = n12 + n21. Under Ho, n12 has a binomial 
(n*, 1/2) distribution. A two-sided p-value 
is the sum of binomial probabilities for n12 val- 
ues at least as far from n*/2 as observed. This 
is a small-sample version of McNemar's test 
(McNemar, 1947). 

Cox (1958a) provided an argument, of which I 
now sketch the outline, that motivates this condi- 
tional approach. Let (Y1h' Y2h) denote the hth pair 
of observations, where a "1" response denotes cate- 
gory 1 (success) and "O" denotes category 2. 
Consider the logit model 

(2.2) log[P(Yth = 1)/P(Yth = 0)] 
= ?h + 3I(t = 2) 

where the indicator I(t = 2) equals 1 when t = 2 
and 0 when t = 1. This model (a special case of the 
Rasch model) permits separate response distribu- 
tions for each pair, but assumes a common effect, 
exp(3) representing the odds ratio of success at 
occasion 2 compared with occasion 1. For the joint 
mass function of the data under the assumption 
that V1h and V2h are independent within each 

pair, one eliminates the nuisance parameters {I ah} 
by conditioning on the pairwise success totals 
{ Yl h + Y2h} . Given a total of 0, PY1h = Y2h =0) 
1, and given a total of 2, P(Ylh = Y2h = 1)=1. 
The conditional distribution of (Y1h, Y2h) depends 
on a only when Ylh + Y2h = 1. For each of the n* 
such pairs, direct calculation using (2.2) shows that 
P(Ylh = 1, Y2h = 0) = [1 + exp(0)]-1. Since n12 = 
ZYlh for these n* pairs, the distribution of n12 
conditional on n* is binomial with parameter [1 + 
exp(3)'1. The parameter equals 1/2 under 
marginal homogeneity (f = 0). This conditional 
analysis implies that pairs having identical re- 
sponse at the two occasions are irrelevant to testing 
71+= r+1. 

Cox (1966) generalized this analysis for data in 
which each case is matched with several controls. 
Gart (1969) gave an exact test for comparing 
matched proportions in crossover designs. 

3. EXACT INFERENCE IN I x J TABLES 

For I x J tables, statistical independence of X 
and Y corresponds to the loglinear model MO= 
(X, Y), which has form 

log mi, = i + Ax + XIV. 

To test this model against the saturated model 
[ M1 = (1.1) extended to I rows and J columns], one 
uses the null distribution of { n U} given { ni+} and 
{n+jI}. 

For multinomial sampling, the cell probability 
parameters { i;} in the distribution of { ni7} can be 
expressed in terms of the marginal probabilities 
and (I - 1)(J - 1) odds ratios. Conditional on 
{niJ} and {n+3}, Cornfield (1956) noted that the 
distribution of {nij} depends only on the odds ra- 
tios. The conditional probabilities are proportional 
to 

I-1 J-1 

i=1 j=1 
I J 
II HI ni,! 
i=1 j=1 

where ai;j = (7rjjijrj)/(rjji7rjj). For exact tests of 
statistical independence (all oeaj = 1), this distribu- 
tion simplifies to the multiple hypergeometric. The 
probability of a table { n,j} having the given 
marginal totals equals 

(II ni+!) (HI n+j!) 

(.n! II II nij! 
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3.1 Linking Test Statistics to Alternatives 

Let Pobs denote the null probability (3.1) of the 
observed table. Freeman and Halton (1951) defined 
the p-value for a conditional test of independence to 
be the null probability of the set of tables having 
probability no greater than Pobs. For the 2 x 2 
case, this simplifies to a two-sided version of 
Fisher's exact test. Many statisticians have argued 
that the p-value should instead be based on the 
exact distribution of some meaningful statistic T 
(such as the efficient score statistic) for quantifying 
the departure of the data from Ho (e.g., Yates, 
1934; Fisher, 1950; Healy, 1969; Agresti and Wack- 
erly, 1977; Cressie and Read, 1989). The p-value 
for the Freeman-Halton test may be regarded as 
one that uses a statistic negatively related to Pobs, 
such as T = - 2 log(Pobs) 

When both classifications are nominal, the usual 
alternative to the independence model is the satu- 
rated model. The efficient score statistic is then the 
Pearson chi-squared statistic for testing the good- 
ness-of-fit of the independence model, 

X= ZE [nij -m mij, 

where mj = n n +j/ n. One could let the p-value 
be the null probability that X2 is at least as large 
as observed (Yates, 1934; Agresti and Wackerly, 
1977; Baker, 1977). More generally, one could use a 
power divergence statistic (Cressie and Read, 1989), 
special cases of which are the Pearson statistic and 
the likelihood-ratio statistic. 

When both classifications are ordinal, it is often 
important to have good power for detecting a mono- 
tone trend in the association. To do this, one could 
let T relate to a Spearman or Pearson-type correla- 
tion (Patefield, 1982), the difference between the 
numbers of concordant and discordant pairs (Agresti 
and Wackerly, 1977), or the Jonckheere-Terpstra 
statistic (StatXact, 1991). In the first case, the 
statistic on which the reference tables are ordered 
is T = ZExiyj(nij - n+n/+j/n), -for two sets of 
monotone scores { xi} for rows and { yj} for columns. 
An exact conditional test using this statistic is an 
efficient score test for the loglinear model of linear- 
by-linear association (Agresti, Mehta and Patel, 
1990). That model has the form 

(3.2) log mjj = p + Xx + X)J + 3xyj, 

(Birch, 1965; Haberman, 1974; Goodman, 1979), 
with the special case f3 = 0 representing statis- 
tical independence of X and Y. For model (3.2), 
the sufficient statistics are T plus those for the 
independence model ({ nij { n+j}). Cohen and 
Sackrowitz (1991) showed that nonrandomized tests 

using T fall in a complete class of unbiased and 
admissible tests. 

When X is nominal and Y is ordinal, one might 
let T be the Kruskal-Wallis statistic adjusted for 
ties (Klotz and Teng, 1977). In that statistic, aver- 
age ranks are used as scores { yj} for the column 
categories, and the test is sensitive to variation 
among the mean ranks computed for the condi- 
tional distributions within the rows. This is an 
efficient score statistic for a loglinear model having 
form (3.2), with "row effects" { fx i treated as 
parameters. For 2 x J tables, Soms (1985) pre- 
sented exact tests sensitive to other alternatives. 
See Haberman (1974), Goodman (1979) and Agresti 
(1990, Chapter 8) for discussions of loglinear 
models with scores. 

To illustrate that tables that are "more contra- 
dictory" to Ho according to some statistic T need 
not be less likely, consider the twelve 3 x 3 tables 
having row totals (6, 1, 2) and column totals (1, 2, 6). 
Table 3 gives the conditional null distribution of 
T = EExiyjnij, for { xi = yi = i - 2}. The distribu- 
tion has support between - 7 and 0 with a mean of 
- 2.22. It is highly irregular, far from its limiting 
normal distribution. Table 3 shows that, for some 
margins, it is not possible to obtain small p-values 
for some alternatives (e.g., a test using T for the 
one-sided alternative of a positive association). The 
table having entries by row (0,2,4/1,0,0/0,0,2), 
one of two tables to have T = -2, has only a 
quarter of the probability of the table having en- 
tries (1,2,3/0,0, 1/0,0,2), the only table having 
T = 0. Yet, the first table is less contradictory to 
Ho than the second, using I T - E(T) I as the crite- 
rion. The first table has a p-value of 1.0 using this 
criterion, but only 0.2856 in the Freeman-Halton 
test. By contrast, the I x I table having nii = 1 for 
all i and nij =0 for all i ?j has P = (2/I!) using 
I T - E(T) I but has P = 1.0 for the Freeman- 
Halton test or the exact test using X2 as the 
criterion. 

TABLE 3 
Exact conditional distribution of T = Z>E(i - 2)(j - 2)n 

under independence, for margins (6,1,2) and (1, 2,6) 

No. 
t of tables Probabilities P(T = t) 

0 1 0.2381 0.2381 
- 1 1 0.1190 0.1190 
- 2 2 0.0595, 0.2381 0.2976 
- 3 1 0.0476 0.0476 
-4 3 0.0238, 0.0476, 0.1190 0.1904 
- 5 1 0.0476 0.0476 
- 6 2 0.0040,0.0476 0.0516 
- 7 1 0.0079 0.0079 
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When I = 2, ordering the tables by T is equiva- 
lent to ordering them by U = Ejyj nlj. Many statis- 
tical tests use U for various choices of scores 
(Graubard and Korn, 1987). For arbitrary mono- 
tone scores, the exact test for T is a small-sample 
version of a trend test proposed by Cochran (1954) 
and Armitage (1955). The statistic with midrank 
scores is used in exact Wilcoxon tests for ordered 
categorical data (Klotz, 1966; Mehta, Patel and 
Tsiatis, 1984). 

3.2 Exact Estimation for I x J Tables 

"Exact" confidence intervals are rarely used for 
I x J tables, probably because of the complexity. 
Reducing parameter dimensionality could be use- 
ful in many applications, by using an unsaturated 
loglinear model. Agresti, Mehta and Patel (1990) 
discussed confidence intervals for ordinal classifica- 
tions when odds ratios satisfy the pattern 

log ajj = (x - X)(YJ- yj) 

implied by the linear-by-linear association model 
(3.2). For this pattern, the non-null distribution of 
T = >Exiyjnij is 

P(T= t I { n+},{n+3};) E ,CIe 

where Ct is the sum of (HjH1jnj!)-1 for all tables 
with the given marginal distributions having T = t. 
One obtains a confidence interval for : and thus 
{ aij by inverting the test of Ho: 1 = 0, as in the 
case of the odds ratio for a 2 x 2 table. When T 
takes its maximum or minimum possible value for 
the given marginals, the conditional and uncondi- 
tional ML estimators of f3 and asymptotic standard 
errors do not exist, but one-sided confidence bounds 
for 13 and odds ratios using it do exist. 

4. EXACT INFERENCE IN THREE-WAY 
CONTINGENCY TABLES 

I next consider three-way tables, paying special 
attention to the 2 x 2 x K case. Such tables occur, 
for instance, when one compares a binary response 
(Y) for two treatments (X), using data obtained at 
K levels of a possibly confounding factor (Z). Two 
hypotheses of importance are (1) conditional inde- 
pendence of X and Y, given Z, and (2) no three- 
factor interaction, meaning that the true X-Y odds 
ratio is identical at each level of Z. Conditional 
independence of X and Y, given Z, corresponds to 
the loglinear model symbolized by (XZ, YZ), and 
no three-factor interaction corresponds to the log- 
linear model (XY, XZ, YZ). For cell-expected fre- 

quencies { mij}, model (XY, XZ, YZ) has the form 

log miJk = 11 + < + ) + X + + + X XXZ + Xk 

and model (XZ, YZ) is its special case in which 
{X?j = O}. 
4.1 Testing Conditional Independence in 2 x 2 x K 

Tables 

A common approach to testing conditional inde- 
pendence [Mo = (XZ, YZ)] performs the analysis 
under the assumption of no three-factor interaction 
[M1 = (XY, XZ, YZ)]. The sufficient statistics are 
the X-Z and Y-Z two-way marginal tables for MO, 
and these as well as the X- Y marginal table for 
M1. The relevant conditional distribution is that of 
the X-Y marginal table, given the X-Z and Y-Z 
marginal tables. The conditioned totals are the 
marginal counts for the K partial tables. For the 
2 x 2 x K case, the distribution simplifies to that 
of T = Ek nllk, given {Iln+kj n2+kj n+1k' n+2k' k 
1, . . . , K}. Under the assumption of no three-factor 
interaction, Birch (1964) showed that UMPU tests 
of conditional independence utilize T (see also 
Lehmann 1986, pages 163-164). 

Conditional on the strata margins, {n1ll, k= 
1, . . . , K} have independent hypergeometric distri- 
butions, each of form (1.2) with 0 = 1. The product 
of the K mass functions determines the null distri- 
bution of their sum. For the one-sided alternative 
of a "positive" association (odds ratio greater than 
1.0 in each level of Z), the p-value for Birch's exact 
test of conditional independence is the null proba- 
bility that Ek n11k is at least as large as observed, 
for the fixed marginal totals. Thomas (1975), 
Pagano and Tritchler (1983b), and Mehta, Patel 
and Gray (1985) gave algorithms for implementing 
this test, which may be regarded as an exact small- 
sample version of the Cochran-Mantel-Haenszel 
test. 

The exact McNemar test for matched pairs (Sec- 
tion 2.3) is a special case of Birch's exact test of 
conditional independence. In this representation, 
each of the n matched pairs has a 2 x 2 table 
relating occasion (or member of pair) to response. 
One tests MO = conditional independence of occa- 
sion and response, given the pair, under the as- 
sumption of M1 = homogeneous odds ratios in the 
n- 2 x 2 tables. 

For 2 x 2 x K tables in which it is unrealistic to 
expect the K conditional X-Y odds ratios to be 
similar or even of the same sign, the saturated 
model is a more relevant alternative than no 
three-factor interaction. In that case, the efficient 
score statistic is Ek Xk, where Xk denotes the 
Pearson statistic for testing independence between 
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X and Y within the kth level of Z. This statistic is 
commonly used in asymptotic tests of conditional 
independence against the general alternative. 
Currently, there do not seem to be any computer 
algorithms for this case. 

4.2 Testing Homogeneity of Odds Ratios in 
2 x 2 x K Tables 

Birch's exact test using test statistic Eknllk as- 
sumes homogeneity of the odds ratios in the 2 x 
2 x K table. Zelen (1971) presented an exact test of 
this assumption. Here, Mo = (XY, XZ, YZ), and 
M1 is the saturated model. The conditional distri- 
bution, given each of the three sets of two-way 
marginal totals, has probabilities proportional to 
(Ilil1klknijk!)-. For the 2 x 2 x K case, the fixed 
totals are {In+kg n2+kq n++1kg n+2kg k = 1 ... , K} 
and {n,,+, n12+, n2l, n22+}. Zelen defined the p- 
value to be the sum of probabilities of all 2 x 2 x K 
tables that are no more probable than the observed 
table. Alternatively, one could define P by order- 
ing the tables with the given two-way margins 
by X2 for testing the fit of loglinear model 
(XY, XZ, YZ). Thomas (1975) and Pagano and 
Tritcher (1983b) gave algorithms for implementing 
Zelen's test. 

To improve potential power in testing model 
(XY, XZ, YZ), one could instead test it against an 
unsaturated model. When the levels of Z have a 
natural ordering, one could use the alternative log- 
linear model by which the log odds ratios change 
linearly across the K strata; that is, 

log mijk = (XY, XZ, YZ) + I(i =j = 1) aZk, 

for fixed monotone scores { Zk1} where I(-) is the 
indicator function. The relevant distribution is then 
that of YZk Zk nllk conditional on all two-way 
marginal totals. Zelen (1971) also presented such 
an exact test. 

To illustrate some exact tests for conditional in- 
dependence and for homogeneity of odds ratios for 
2 x 2 x K tables, consider Table 4, a 2 x 2 x 3 
table based on a larger table presented by Gast- 

TABLE 4 
Example of 2 x 2 x K analysis 

July August September 
promotions promotions promotions 

Race Yes No Yes No Yes No 

Black 0 7 0 7 0 8 
White 4 16 4 13 2 13 

Source: Gastwirth (1988). 

wirth (1988, page 266). The data refers to P = 
whether promoted and R = race, stratified by M = 
month of promotion consideration (in 1974). Cases 
involved GS-13 level computer specialists being 
considered for promotion to level GS-14. (It appears 
that many of the subjects appeared in two or all 
three strata, but this information is not available. 
So, like Gastwirth, I treat the promotion decisions 
as independent.) Under the assumption of a con- 
stant odds ratio 0 between P and R at each level of 
M, we first test Ho: 0 = 1 against H1: 0 < 1. In 
using the one-sided alternative for the association 
between P and R, the test is sensitive to evidence of 
possible discrimination against blacks, in the sense 
of the probability of promotions being lower for 
blacks than whites. Given the P and R marginal 
totals at each level of M, n1ll can range between 0 
and 4, n1l2 can range between 0 and 4, and n113 
can range between 0 and 2. The test statistic T = 
Enllk can assume values between 0 and 10, and 
under Ho, E(T) = 2.90 and u(T) = 1.35. Note that 
the sample data represent the most extreme possi- 
ble result in each of the three cases. The observed 
test statistic is T = 0, and the p-value is the null 
value of P(T ' 0), which is 0.026. Zelen's test of 
the hypothesis of a constant odds ratio is a test of 
fit of the loglinear model (PR, PM, RM). The refer- 
ence set consists of the subset of these 2 x 2 x 3 
tables that also satisfy n1l + = 0. The observed table 
is the only such table, so the test is degenerate, 
giving P = 1.0. 

4.3 Exact Estimation in 2 x 2 x K Tables 

Assuming no three-factor interaction and condi- 
tioning on the strata totals, the joint distribution of 
{ n1ll, ..., nllK} is the product of K terms of the 
type given in (1.2) for the 2 x 2 case. This distribu- 
tion depends only on the common odds ratio. Birch 
(1964) discussed the conditional ML estimator of 
the common odds ratio, and Gart (1970) defined 
"exact" confidence intervals as a direct extension 
of Cornfield's "exact" intervals for 2 x 2 tables. 
Thomas (1975), Pagano and Tritchler (1983b), 
Mehta, Patel and Gray (1985), and Vollset, Hirji 
and Elashoff (1991) provided algorithms for calcu- 
lating such intervals. When the sufficient statistic 
T = Eknllk attains its minimum or maximum pos- 
sible value, asymptotic confidence intervals (e.g., 
using the Mantel-Haenszel approach; see Agresti 
1990, pages 235-236) do not exist, but one-sided 
"exact" confidence intervals are well defined. 

Table 4 has the boundary value T = 0, resulting 
in a degenerate conditional ML estimate of 0.0 for 
an assumed constant odds ratio. An "exact" 95% 
upper confidence bound for the odds ratio equals 
0.779, the value 0 that gives P = 0.05 in testing 
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Ho: 0 = 00 against H1: 0 < 00. The median unbi- 
ased estimator equals 0.152. 

4.4 Exact Methods for I x J x K Tables 

In principle, methods for exact testing and esti- 
mnation extend to loglinear models for multiway 
tables. Current computational algorithms are re- 
stricted to certain analyses for 2 x J x K tables. In 
this subsection, I outline the types of inferences for 
which it would be useful to extend computational 
algorithms in the I x J x K case. 

Consider the hypotheses corresponding to the fol- 
lowing five hierarchical loglinear models: 

(1) (X, Y, Z): Mutual independence of X, Y, 
and Z; 

(2) (X, YZ): Joint independence of X and the 
Y-Z classification; 

(3) (XZ, YZ): Conditional independence of X 
and Y, given Z; 

(4) (XY, XZ, YZ): No three-factor interaction; 
(5) (XYZ): Saturated model. 

For each of models (1) to (4), one can consider exact 
testing against the alternative of the next most 
complex model, and against the general alternative 
of the saturated model. 

Certain tests are special cases of ones already 
developed for two-way tables, so they do not require 
separate consideration. Hypothesis [2: (X, YZ)] is a 
special case of statistical independence for a two- 
way table, in which the second classification con- 
sists of the JK combinations of categories of Y and 
Z. Thus, an exact test of [2: (X, YZ)] against [5: 
(XYZ)] is simply a standard exact test of indepen- 
dence for a two-way (I x JK) table. For instance, 
in Table 4, an exact test of (P, RM) (i.e., that 
promotion is jointly independent of race and month 
of decision) is an exact test for the two-way table 
having rows (0, 4, 0, 4, 0, 2/7, 16, 7, 13, 8, 13). The 
Pearson test statistic of 5.62 has an exact p- 
value of 0.353. [The attained significance for 
this joint test is weak compared to the p-value of 
0.026 obtained for the P-R association alone in 
the one-sided exact test of (PM, RM) against 
(PR, PM, RM). This shows how severely the evi- 
dence represented by an effect of a certain size can 
diminish when the degrees of freedom on which it 
is based increase drastically.] 

A test of [2: (X, YZ)] against [3: (XZ, YZ)] tests 
whether the XXz term in mnodel (XZ, YZ) is zero. 
By standard collapsibility results (e.g., Bishop, 
1971; Agresti, 1990, pages 146 and 230), when this 
model holds the XXz term is identical to the XXZ 
term in the saturated two-way loglinear model for 
the marginal X-Z two-way table. Thus, one can 
conduct an exact test of [2: (X, YZ)] against [3: 

(XZ, YZ)] using an exact test of independence of X 
and Z in that two-way table. For instance, one can 
conduct an exact test of (P, RM) against (PR, RM) 
by simply testing whether P and R are indepen- 
dent in the marginal table (0,22/10,42); for this 
table, the Pearson statistic has two-sided P = 
0.056. Similarly, one can conduct an exact test of 
[1: (X, Y, Z)] against [2: (X, YZ)] using an exact 
test of independence of Y and Z in the two-way 
Y-Z marginal table. Computational algorithms are 
unavailable for the other situations, discussed in 
the remainder of this subsection. 

To test hypothesis [1: (X, Y, Z)] against the satu- 
rated model, one conditions on the sufficient statis- 
tics for (X, Y, Z), which are Ini++, n+j+g n++k} 

The resulting mass function is 

(Ini++!) (n+j+!) (1IIn++k!) 

(!)2HHHn1 ( n! IIIII nijk ! j k ij 

Stumpf and Steyn (1986) gave formulas for the 
first- and second-order moments of the cell counts. 
To construct an exact test of hypothesis [1: 
(X, Y, Z)] against the saturated model, one could 
use this distribution to generate the exact con- 
ditional distribution of the Pearson statistic for 
testing the fit of model (X, Y, Z). This case is 
relatively unimportant, as the hypothesis of mu- 
tual independence is plausible in very few applica- 
tions. 

A more important case is a test of conditional 
independence [3: (XZ, YZ)] of X and Y against 
[4: (XY, XZ, YZ)]. Such a test generalizes Birch's 
test for 2 x 2 x K tables. Here, one tests condi- 
tional independence under the assumption that the 
(I - 1)(J - 1) odds ratios relating X and Y are 
identical across the K levels of Z. Model (XZ, YZ) 
has the sufficient statistics ({nj+k}0{ In+jk}), and 
model (XY, XZ, YZ) has these plus { nij+ }. One 
uses the distribution of ({ n+j} I { fni+k} { fn+jk}) 

which is a product of multivariate hypergeometric 
distributions from the various layers of Z. Let d 
denote the (I - 1)(J - 1) x 1 vector having ele- 
ments 

fk - (~ni+kn+jk d i j =, n ijk - n 
k LI]+ 
i = 1,..I 1j= 1.,J- 1. 

The efficient score test orders tables in the refer- 
ence set using d'V-1d, where V is the null co- 
variance matrix of d. Birch (1965) proposed an 
asymptotic test of this type. 
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Alternatively, one could test conditional indepen- 
dence [3: (XZ, YZ)] against [5: (XYZ)], if one be- 
lieves that the association between X and Y may 
vary considerably across levels of Z. An efficient 
score statistic is then the Pearson statistic for test- 
ing the fit of (XZ, YZ), which is Ek X2, where Xk2 
is the Pearson statistic for testing independence 
between X and Y within the kth level of Z. This 
test would also use the conditional distribution that 
fixes the XZ and YZ marginal tables. Since it has 
a broader alternative than the generalized Birch 
test, this test would tend to be less powerful than 
that test when model (XY, XZ, YZ) provides a de- 
cent approximation to the actual distribution. 

An exact test of no three-factor interaction [4: 
(XY, XZ, YZ)] for I x J x K tables generalizes Ze- 
len's test for 2 x 2 x K tables. Here, the null hy- 
pothesis states that the (I - 1)(J - 1) odds ratios 
relating X and Y are identical across the K levels 
of Z. The relevant conditional distribution has 
probabilities proportional to (1I iljlk f jk!)- 1, for 
the reference set of tables having XY, XZ and YZ 
marginal tables identical to the observed ones. An 
efficient score test against the general alternative 
[5: (XYZ)] orders tables in the reference set by the 
Pearson statistic for testing the fit of the model. 

For ordinal variables, one would modify the above 
ideas by constructing tests to increase power against 
important alternatives, such as has been done for 
I x J tables. For instance, to test conditional inde- 
pendence (XZ, YZ), one might choose an alter- 
native model that implies a monotone conditional 
X-Y association. One could use the single degree- 
of-freedom test statistic Zt { i Ej x i yj[ nijk - 

(ni+kn+jk)/n++k]} to order the reference set of ta- 
bles having the fixed X-Z and Y-Z marginal tables. 
This results from comparing model (XZ, YZ) to a 
model of homogeneous linear-by-linear association, 
whereby the XXjy term in model (XY, XZ, YZ) is 
replaced by a term fxiyj for fixed monotone row 
and column scores. Such a test would be an exact 
analog of an asymptotic score test proposed by 
Mantel (1963) and Birch (1965). 

There has been some work of this type for the 
2 x J x K case with ordered levels of Y (Mehta, 
Patel and Senchaudhuri, 1991). In this case, one 
can take x1 = 1 and x2 = 0, and consider the condi- 
tional distribution of Ek[ZYjynijk]. For preselected 
monotone scores, this gives a stratified version of 
the Cochran-Armitage trend test. For rank { yj} 
scores, it gives a stratified version of the Wilcoxon 
test. Another application of this case is testing 
marginal homogeneity in an I x I table with the 
same ordered row and column categories. One can 
conduct this test by conducting the exact test of 
conditional independence for the 2 x I x n table, 

where the two rows for stratum k contain one 
observation in each row, giving the responses at 
the two occasions for subject k. Such a test is an 
exact analog of asymptotic tests described by White, 
Landis and Cooper (1982) and Kuritz, Landis and 
Koch (1988). 

Interval estimation for I x J x K tables would 
seem to be awkward except for simpler models that 
reduce the dimensionality of the parameter space. 
Examples include models that describe the X- Y 
conditional association by a linear-by-linear term 
or describe three-factor interaction by a linear trend 
in conditional log odds ratios. 

5. EXACT INFERENCE IN LOGISTIC 
REGRESSION MODELS 

Exact inferences for loglinear models discussed 
in previous sections have counterparts for other 
generalized linear models that use natural parame- 
ters as the basis of the link function. A closely 
related example for categorical data is logistic re- 
gression modeling. Assuming a binomial distribu- 
tion with parameter ir for the response, one uses 
the logit link, log[ir/(1 - ir)]. Logistic models are 
particularly useful when highlighting one categori- 
cal variable in the contingency table as a response 
and the others as explanatory. Loglinear models do 
not make this distinction, although logistic models 
with qualitative explanatory variables have equiv- 
alent loglinear representations. 

For subject i, let yi denote a binary response, 
and let xi = (xio, xi1,..., xik) denote values of k 
explanatory variables, where xio = 1. The logistic 
regression model is 

exp( E kOj xij) 
(5.1) i(x j) 

j 1 + 

or 

log[ r (xi)/(1 - 7r(xi))] = E31xii. 

Under the usual assumption that { yiJ are indepen- 
dent Bernoulli outcomes, the sufficient statistic for 

is Tj==0iyixij j= 0,.., k. As noted by Cox 
(1958b, 1970), one can conduct exact inference for 
f3 using the distribution of Tj, conditional on {Ti, 
i ? j}. Such inference is called conditional logistic 
regression (Bayer and Cox, 1979; Breslow and Day, 
1980, Chapter 7; Tritchler, 1984; Hirji, Mehta and 
Patel, 1987). 

To illustrate, Table 5 shows some data from a 
case-control study (Shapiro et al., 1979) relating 
cigarette smoking to myocardial infarction for 
women of various ages using oral contraceptives. 
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TABLE 5 
Example for exact logistic analysis 

Smoking level 
(cigarettes/day) 

Age Disease status 0 1-24 > 24 

25-29 Myocardial infarction 0 1 3 
Control 25 25 12 

30-34 Myocardial infarction 0 1 8 
Control 13 10 10 

Source: Shapiro et al. (1979). 

Let {nijk} denote the count at level i of smoking, j 
of disease status, and k of age. Let { xi denote 
scores assigned to the levels of smoking. Let 7rik 
denote the probability of disease for subjects 
at level i of smoking and k of age. One might 
consider the model 

(5.2) log iik 1 =0 + 31xi + 032I(age = 2). 
Ll1 -rik J 

Then { ni+k} are fixed for this model, and { n+jk} 
are fixed by the retrospective nature of the study. 
To conduct exact inference about B1, one considers 
the distribution Of Ek(xixinilk) (the sufficient 
statistic for B1), conditional on these totals. For 
{ x1 = 0, x2 = 12.5, X3 = 30}, the conditional ML 
estimate of B1 is 0.130, and the exact p-value for 
testing B1 = 0 against B1 > 0 is 0.000. Here, re- 
sults are similar to those obtained with the uncon- 
ditional ML analysis, for which the estimate of ,B 
of 0.133 has an estimated standard error of 0.042. 
One could add an interaction term to the model and 
do an exact analysis for it. This would be particu- 
larly natural with additional age strata represent- 
ing greater variation in the age factor, since one 
might expect the effect of smoking to increase at 
higher age levels. 

Several special cases of exact analyses for the 
logistic model have received attention in the litera- 
ture. For instance, Breslow and Day (1980), Peritz 
(1982), and Hirji, Mehta and Patel (1988) discussed 
exact inference for matched case-control studies 
with the logistic model, in which case a subset of 
the explanatory variables are used for matching. 
When k = 1 in (5.1), the exact test of f1 = 0 using 
T, = Eiyixil given To = Eiyi is a special case of 
the linear-by-linear test described in Section 3.1 
applied to I x 2 tables. Here, I represents the 
number of distinct sample values of the explana- 
tory variable, and the test may be regarded as an 
exact version of the Cochran-Armitage trend test. 

Difficulties can arise in exact inference for logis- 
tic regression when some explanatory variables are 

continuous. The { yij values may be completely 
determined by the given sufficient statistics, mak- 
ing the conditional distribution degenerate. 

Algorithms for exact conditional inference for lo- 
gistic regression can be applied to perform infer- 
ence for equivalent loglinear models. To illustrate, 
consider loglinear modeling of several I x 2 tables. 
Regard the tables as a three-way I x 2 x K cross- 
classification of X, Y and Z. The loglinear model is 
equivalent to a logistic model for response Y when- 
ever that loglinear model has a general association 
term relating X and Z. For instance, the logistic 
model (5.2) for Table 5 corresponds to the loglinear 
model having form 

log mijk = , + XS + D+ X + X 1ik + Xjk + 

where {Y1 = 1, Y2 = 0} and S = smoking, D = 
disease status, and A = age. This is a special case 
of the loglinear model of homogeneous linear- 
by-linear S-D association. 

6. EXACT GOODNESS OF FIT 

One can interpret tests of independence, condi- 
tional independence and no three-factor interaction 
against general alternatives as tests of goodness of 
fit of loglinear models. In principle, one could use 
analogous methods to construct exact tests of good- 
ness of fit for other loglinear or logistic regression 
models. For a particular model M, the reference set 
consists of all tables having the observed values for 
the minimal sufficient statistics. Given that the 
model holds, the conditional distribution of the data 
given those sufficient statistics is independent of 
any parameters. One could construct the test by 
computing the null distribution of a goodness-of-fit 
statistic, such as the Pearson statistic. The p-value 
for testing the model is the conditional probability 
that the goodness-of-fit statistic is at least as large 
as observed. The ML fitted values for the model are 
the same for all tables in the conditional reference 
set. 

For instance, in testing independence with 
Fisher's exact test, one also implicitly tests the 
adequacy of the loglinear model of independence, 
(X, Y). To test the more general model (3.2) of 
linear-by-linear association in a two-way table, one 
considers the conditional distribution of the data 
given {ni+}, {n+j}, and EExiyjnij. 

McCullagh (1986) showed that, even for large 
samples, it is beneficial to perform goodness- 
of-fit tests using the conditional rather than 
unconditional distribution. Although an exact 
goodness-of-fit test makes theoretical sense for any 
model having simple sufficient statistics, a general 
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computer algorithm is not available for it. This is a 
useful topic for future research. There is also a 
need for work on exact distributions of localized 
measures of goodness of fit, such as cell residuals. 
Bedrick and Hill (1990) gave exact conditional tests 
for a single outlier and for multiple outliers in 
logistic regression. 

7. COMPUTING FEASIBILITY 

Doing computations for exact conditional infer- 
ence requires working with the set of contingency 
tables having the given values of the sufficient 
statistics that are fixed for the inference. The po- 
tentially huge cardinality of the conditional refer- 
ence set has been a severe impediment to the use of 
exact tests. 

To illustrate, a 4 x 4 table with only 20 observa- 
tions can have as many as 40,176 tables with the 
same margins; a 4 x 4 table with 100 observations 
has a maximum cardinality on the order of 7.2 x 
109. For given I and J and marginal proportions, 
the number of tables in the reference set of I x J 
tables with those fixed proportions increases expo- 
nentially in the sample size n. For fixed n, the 
number of tables having given row and column 
marginal proportions also increases rapidly as I 
and J increase or as the row and column propor- 
tions become more homogeneous. For instance, a 
5 x 5 table has a maximum cardinality on the 
order of 2.1 x 106 for 20 observations and 9.2 x 
1014 for 100 observations. Good (1976, 1977) and 
Gail and Mantel (1977) gave approximations for 
the cardinality, and Agresti and Wackerly (1977) 
and Agresti, Wackerly and Boyett (1979) gave max- 
ima for several table dimensions and sample sizes. 

Enormous improvements achieved recently both 
in algorithms and in computer power have made 
exact inference much more feasible than it was a 
decade ago. Most analyses conducted then with a 
mainframe computer can be conducted now in the 
same order of time on a personal computer. When 
one is interested only in a p-value rather than the 
entire distribution of some statistic, substantial 
savings in time are obtained using algorithms that 
do not require total enumeration of the reference 
set (Pagano and Halvorsen, 1981; Mehta and Patel, 
1983). With some algorithms, exact analyses can be 
easily conducted on a PC running on MS-DOS when 
the order of the cardinality is about 107. They can 
be conducted when the cardinality is much larger, 
using computers having operating systems with 
larger memory capacities. 

To illustrate, consider the 3 x 4 table (60,4, 1, 
0/1,5,4, 1/3,3,3,2), having n = 100 and 33,675 ta- 
bles in the reference set. In 1978, I performed the 

Freeman-Halton test using a state-of-the-art FOR- 
TRAN program on an IBM 370/165 in about 15 
seconds CPU time. This year, I performed the same 
analysis in 15 seconds total time using the software 
package StatXact (1991) on a 386-version PC (the 
CompuAdd 386SX, with math coprocessing chip) 
running on MS-DOS at 16 mHz, and in 1 second of 
CPU time using SAS (PROC FREQ) on a worksta- 
tion (DEC 3100). The 4 x 4 table (7,5,0,0/1,15, 
1,0/0,7,7,0/0,0,4,9) has 12,798,781 tables in the 
reference set. In 1977, Klotz and Teng (1977) esti- 
mated it would take 6 hours on a Univac 1110 at 
the University of Wisconsin to perform an exact 
Kruskal-Wallis test for a table having these mar- 
gins. I performed this analysis with StatXact in 
about 8 minutes of total time on a 386 version PC. 
This table has a very small p-value (0.0000 rounded 
to four decimal places), which results in consider- 
able savings in time for algorithms that are able to 
determine whether many tables contribute to the 
p-value without explicitly enumerating all their 
cells. 

7.1 Algorithms 
A variety of algorithms have been used in com- 

puting exact conditional distributions. Verbeek and 
Kroonenberg (1985) presented a good survey of 
those used for I x J contingency tables. These in- 
clude algorithms that provide total enumeration of 
the tables in the reference set (e.g., March, 1972; 
Boulton, 1974; Baker, 1977; Cantor, 1979; Balmer, 
1988), algorithms that compute the characteristic 
function and invert it via Fourier transforms (e.g., 
Pagano and Tritchler, 1983a, b), network algo- 
rithms (Mehta and Patel, 1983) and Monte Carlo 
algorithms (e.g., Agresti, Wackerly, and Boyett, 
1979). Their paper also has enlightening discus- 
sions of practical problems related to the algo- 
rithms and hardware for implementing them, such 
as how to ensure proper comparison of extremely 
small probabilities. 

Algorithms that provide total enumeration of the 
reference set are very time-consuming, and ade- 
quate only for small problems. In the characteristic 
function approach (Good, Gover and Mitchell, 1970; 
Good, 1982; Pagano and Tritchler, 1983a, b), one 
computes the characteristic function of the statistic 
of interest (such as a goodness-of-fit statistic) using 
a recurrence relation and then inverts it using a 
Fourier transform to obtain the relevant distribu- 
tion. The fast Fourier transform (Cooley and Tukey, 
1965) is a popular method for fast convolution of 
long sequences, and so it is a natural one to apply 
to analyses (such as those for 2 x 2 x K tables) 
involving convolutions of distributions. This method 
is relatively space and time effilcient, computation 
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time increasing polynomially in the sample size, 
rather than exponentially. However, Vollset, Hirji 
and Elashoff (1991) noted that this method's use of 
trigonometric functions and complex arithmetic can 
introduce substantial round-off errors for non-null 
calculations when there is a wide range between 
the largest and smallest of the combinatorial coeffi- 
cients that determine the exact distribution (e.g., a 
ratio of the two exceeding about 1020). 

Among the most popular and versatile programs 
developed in the past decade have been ones using 
the network algorithm. This algorithm has been 
applied to several problems in a series of papers by 
Cyrus Mehta, Nitin Patel and some coworkers. For 
instance, see Mehta and Patel (1983, 1986) for its 
application to Freeman-Halton exact tests for I x J 
tables; Mehta, Patel and Tsiatis (1984) for exact 
tests for 2 x J tables; Mehta, Patel and Gray (1985) 
for inference for the common odds ratio in 2 x 2 x K 
tables; Hirji, Mehta and Patel (1987) for exact lo- 
gistic regression; Agresti, Mehta and Patel (1990) 
for exact inference in I x J tables with ordered 
categories; Mehta, Patel and Senchaudhuri (1991) 
for inference for 2 x J x K tables; and Hilton, 
Mehta and Patel (1991) for Smirnov tests for cate- 
gorical or continuous data. 

I provide here only a brief outline of the network 
representation for the reference set for an I x J 
table with fixed margins, and refer the reader to 
the previously mentioned papers for technical de- 
tails on the algorithm itself. The network represen- 
tation consists of nodes and arcs, constructed in 
J + 1 stages. For k = 0, . . ., J, the nodes at stage 
k have the form (k, Wk), where Wk = (wlk, ... *, WI0 
with Wik = nil + ''' +hik and wo = 0. There are 
as many nodes at stage k as there are possible 
partial sums for the first k columns of the table. 
Arcs emanate from each node at any stage k, each 
arc being connected to a distinct node at stage 
k + 1. The network is constructed recursively by 
specifying all successor nodes (k +1, Wk +, ) that 
are connected by arcs to each node (k, Wk). A path 
through the network is a sequence of arcs (0, 0) - 
(1, wl) -* . - (J, wJ). Each path represents a 
distinct table in the reference set, with entries 
(Wk+l - Wk) in column k + 1. The network repre- 
sentation is used in calculating the exact distribu- 
tion by stagewise recursion, beginning at node 
(0,O). Figure 1 shows the network representa- 
tion for the 3 x 3 table discussed in Section 3.1 
having row margins (6,1,2) and column margins 
(1, 2, 6). The topmost path gives the table 
(1, 2, 3/0, 0, 1/0,0,2). 

For simply calculating p-values, one can dramat- 
ically increase the speed of the network algorithm 
by computing at each node lower and upper bounds 

on test statistic values for tables having path pass- 
ing through that node. In this way, one can deter- 
mine tables that necessarily do or do not contribute 
to the p-value, without processing the remaining 
parts of paths in the network passing through that 
node. Vollset, Hirji and Elashoff (1991) gave an 
adaptation of the network algorithm that uses an 
algebraic rather than geometric representation, 
treating convolutions of distributions using polyno- 
mial multiplication. Their algorithm computes the 
null distribution on the natural rather than loga- 
rithmic scale. Using this approach, they obtained 
faster computation of "exact" confidence limits for 
the common odds ratio in 2 x 2 x K tables. 

These days, algorithms such as the network algo- 
rithm can practically handle analyses for most I x 
J and 2 x 2 x K tables having a small to moderate 
number of cells and small to moderate cell counts. 
To illustrate, Table 6 reports the CPU time on a 

(2, (0) ) 

I . 0) (2,l) \ 

FIG. 1. Network representation for 3 X 3 tables having row 
margin (6,1,2) and column margin (1, 2,6). 

TABLE 6 

Sample CPU times (seconds) for Freeman-Halton test on 
I x I tables with uniform marginal counts and p-values 

approximately 0.05, using SAS on a DEC 3100 workstation 

Total sample size 
I 10 20 30 40 50 60 80 100 

2 <1 <1 <1 <1 <1 <1 <1 <1 
3 <1 <1 <1 <1 <1 <1 1 1 
4 <1 1 2 2 14 22 38 643 
5 1 2 12 40 42 72 1037 20,793 
6 1 37 107 260 724 8564 a 

7 9 118 1270 2123 11,601 a a 

a More than 6 hours. 
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DEC 3100 workstation needed for SAS (PROC 
FREQ) to perform the Freeman-Halton test for 
I x I tables of various sizes having uniform 
marginal totals and cell frequencies changed from 
uniformity sufficiently to give p-values approxi- 
mately equal to 0.05. Times are much faster when 
marginal counts are nonuniform. For instance, a 
5 x 5 table with n = 100 having both margins 
equal to (60,25,10,3,2) took only 40 seconds CPU 
time. 

The remaining problematic area is large, sparse 
tables, for which there are a large number of cells 
and cell counts too small to appeal to standard 
asymptotic theory. For two-way tables, examples 
would be tables of at least about 50 cells, having 
several fitted values less than about 5. Even with 
current computing power, the conditional reference 
set for such tables is often too large to be handled 
by exact methods. Moreover, the cardinality grows 
so rapidly as a function of the number of cells that, 
regardless of future improvements in computer 
power, it may always be possible to produce tables 
that cannot be handled exactly. 

A good compromise for handling large, sparse 
tables is to estimate precisely the inferential char- 
acteristics of interest, such as exact p-values and 
confidence intervals. One can do this using Monte 
Carlo sampling of tables in the reference set, by 
simulating the conditional hypergeometric sam- 
pling distribution (Agresti, Wackerly and Boyett, 
1979; Boyett, 1979; Cox and Plackett, 1980; Pate- 
field, 1981, 1982; Kreiner, 1987; StatXact, 1991). 
Each sampled table provides a Bernoulli random 
variable, indicating whether the test statistic is at 
least as large as observed. The estimated exact 
p-value is the sample mean of those Bernoulli ran- 
dom variables, which is the proportion of sampled 
tables that have test statistics at least as large as 
the observed one. The precision of the estimate 
is determined by the estimated sample variance 
P(1 - P)/N, where N is the number of tables sam- 
pled. Sampling of 17,000 tables ensures the esti- 
mate is good to within 0.01 with confidence at least 
0.99. 

Agresti (1990, page 308) gave a 16 x 5 table with 
219 observations, relating various characteristics of 
alligators to their primary food choice (having cate- 
gories: fish, invertebrate, reptile, bird, other). For 
such large tables, one could either sample a fixed 
number of tables N to guarantee a certain accu- 
racy, or repeatedly take samples of N' tables until 
achieving a certain accuracy. Using the latter ap- 
proach with N' = 2,000 and desired accuracy 
0.0005 for a p-value for testing independence with 
the Pearson statistic, Monte Carlo sampling of 
10,000 tables provides an estimated exact p-value 

of 0.0004 and a 99% confidence interval for that 
exact p-value of (0.0000, 0.0009). 

An advantage of the Monte Carlo method is that 
the amount of computational work is much less 
dependent on the sample size n and table size I x J 
than for methods for exact analysis. For a method 
of simulating tables that involves taking a random 
permutation of n integers, Agresti, Wackerly and 
Boyett (1979) noted that the CPU time is approxi- 
mately linear in n and stable in I and J. Patefield 
(1981) provided a method that is more efficient for 
large n. Although it takes longer to generate each 
table with Monte Carlo methods, only a relatively 
small number need to be generated. In principle, 
this method could be used to approximate precisely 
any exact analysis, including those for which exact 
calculations may never be feasible. 

Mehta, Patel and Senchaudhuri (1988) described 
a more sophisticated and faster Monte Carlo ap- 
proach, using importance sampling. Tables are 
sampled from the conditional reference set in pro- 
portion to their importance for reducing the vari- 
ance of the estimated p-value, rather than in 
proportions corresponding to their hypergeometric 
probabilities. In importance sampling, each sam- 
pled table provides an estimate of the p-value that 
is designed to be much better than the crude 
Bernoulli estimate provided by Monte Carlo sam- 
pling. The tables are sampled using a network 
algorithm. For linear rank tests for 2 x J tables, 
they noted that importance sampling can be up to 
four orders of magnitude more efficient than Monte 
Carlo sampling. That is, to achieve a certain fixed 
accuracy with a p-value estimate, the ratio of the 
number of tables sampled using the Monte Carlo 
approach versus importance sampling was about 
10,000 for tests such as the trend test. However, 
the initial overhead involved in using importance 
sampling, due partly to using backward induction 
with the network algorithm to set up the network- 
based sampling scheme, makes it inefficient for 
certain very large data sets. 

7.2 Software 
Until recently, software for exact methods for 

contingency tables was nearly nonexistent, at least 
in the most popular statistical packages. Even now, 
nearly all packages can perform Fisher's exact test 
but little if anything else. With a couple of excep- 
tions, our discussion here is limited to the most 
commonly used packages. 

SAS (using procedure FREQ) and IMSL (using 
routine CTPRB) can perform Fisher's exact test 
and the Freeman-Halton extension for I x J ta- 
bles, but do not give options to perform tests that 
base the p-values on goodness-of-fit statistics or 
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ordinal statistics. SAS uses the network algorithm 
from Mehta and Patel (1983), whereas IMSL uses 
an algorithm that enumnerates the entire reference 
set. Thus, although neither program seems to have 
limits on table sizes, SAS can handle a much greater 
variety of tables in a reasonable amount of time. 
Currently, BMDP and SPSSX only perform Fisher's 
exact test. All these packages seem to use the table 
probability as the basis of ordering the reference 
set for two-sided p-values. 

StatXact (1991) is a statistical package specializ- 
ing in exact nonparametric inference and in exact 
inference for contingency table problems. Devel- 
oped by Mehta and Patel and colleagues, it uses 
versions of the network algorithm described in their 
articles. For 2 x J tables, StatXact performs a gen- 
eral linear rank test that includes as special cases 
the Wilcoxon test and a trend test with arbitrary 
scores. For I x J tables with min(I, J) c 5, it can 
perform the Freeman-Halton test and exact tests 
of independence using the Pearson or likelihood- 
ratio chi-squared statistics. For tables with ordered 
columns, it can perform the exact test using the 
Kruskal-Wallis statistic when max(I, J) c 5. 
When rows are also ordered, it can perform the 
exact test of linear-by-linear association described 
by Agresti, Mehta and Patel (1990) when min(I, J) 
c 5, and it can use the Jonckheere-Terpstra statis- 
tic when I c 5. For 2 x 2 x K tables, it performs 
Birch's exact test of conditional independence (for 
K ' 200), Zelen's exact test of homogeneity of odds 
ratios, and "exact" confidence intervals for an as- 
sumed common odds ratio. For 2 x J x K tables, 
StatXact performs stratified linear rank tests and 
can perform inference for parameters in conditional 
logistic regression models. For I x J and 2 x J x K 
tables, StatXact performs Monte Carlo sampling 
for cases beyond its capability for exact inference 
(as long as I c 50, J c 50, K ' 200, and IJK < 
2500), and it can perform importance sampling for 
2 x J tables. The StatXact manual is also a good 
reference for many examples of exact conditional 
analyses. Many of the StatXact routines are 
also available in the EGRET statistical software 
package (EGRET, 1991). 

Baptista and Pike (1977) gave a FORTRAN pro- 
gram for the Sterne-type confidence interval for the 
odds ratio in a single 2 x 2 table. For 2 x 2 x K 
tables, Thomas (1975) gave a FORTRAN program 
for the conditional ML estimate and an "exact" 
confidence interval for a comnmon odds ratio, and 
for exact tests of conditional independence and 
no three-factor interaction (when K ' 20). This 
program can be slow since, unlike algorithms 
presented by Pagano and Tritchler (1983b) and 
StatXact (1991), it requires evaluating every table 

in the conditional reference set. Vollset and Hirji 
(1991) gave a fast GAUSS program for the exact 
test of conditional independence and confidence in- 
terval for a common odds ratio, and indicated that 
it can handle up to about 1,000 points in the distri- 
butionof Zknllk. 

8. OTHER APPROACHES TO EXACT 
INFERENCE 

This discussion has focused on the classical condi- 
tional approach to exact inference for contingency 
tables. This section discusses controversies re- 
garding that approach and describes alternative 
approaches that produce results having some con- 
nection with those for exact conditional methods. 

8.1 Controversy Over Exact Conditional Approaches 

Most of the debate about exact conditional meth- 
ods for categorical data has focused on their use 
with Fisher's exact test when both margins of the 
table are not naturally fixed. I discuss the contro- 
versy only briefly, as it has already generated an 
enormous literature. See, for instance, Barnard 
(1945, 1947, 1949, 1979, 1989), Berkson (1978), 
Basu (1979), Kempthorne (1979), Upton (1982), 
Suissa and Shuster (1984, 1985), Yates and discus- 
sants (1984), Bhapkar (1986), Haber (1987, 1989), 
D'Agostino, Chase and Belanger (1988), Lloyd 
(1988b), Rice (1988), Little (1989), Camilli (1990), 
Mehta and Hilton (1990), Routledge (1990), Storer 
and Kim (1990), and Greenland (1991). 

The perceived problem with the test results 
mainly from the conditional distribution of n1l (or 
the odds ratio) being highly discrete, much more so 
than when one or neither margin is fixed. This 
results in the test being quite conservative in a 
conditional or unconditional sense, when used with 
a fixed significance level such as a = 0.05. The 
actual probability of rejecting the null hypothesis 
may be considerably less than the nominal level. 
Proponents of Fisher's test (e.g., Yates, 1984) ar- 
gue that (1) one should not use arbitrary fixed 
significance levels (versus simply reporting the 
p-value), (2) one should not average into the cal- 
cu lation of the p-value other tables whose mar- 
ginals did not occur, and (3) no substantive loss of 
information about Ho results from conditioning 
on the marginals (i.e., the marginal counts are 
approximately ancillary). 

The randomized-decision version of Fisher's exact 
test, using randomization on the boundary of a 
critical region to achieve a fixed significance level 
a, is UMPU (Tocher, 1950). This is of little solace 
for practical work, since randomization is not used, 
although it indicates that Fisher's test may also 
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perform well for the mid-p definition of a p-value. 
The mid-p value is half the probability of the ob- 
served result plus the probability of more extreme 
values. For discrete data, the mid-p value has null 
behavior more nearly like a uniform (0, 1) random 
variable than the ordinary p-value (e.g., its null 
expected value is 0.5, and the sum of its two one- 
tailed p-values equals 1.0). It has been recom- 
mended (e.g., by Lancaster, 1961; Plackett in the 
discussion of Yates, 1984; Barnard, 1989, 1990) as 
a good compromise between having a conservative 
test and using randomization on the boundary to 
eliminate problems from discreteness. For compar- 
ing two binomial probabilities r1 and r2, Hirji,- 
Tan and Elashoff (1991) noted that the mid-p ad- 
justment to Fisher's exact test has actual levels of 
significance closer to nominal levels than do classi- 
cal asymptotic tests. This is especially true when 
the common value of { -ri} is near 0 or 1 or when the 
sample sizes n1l and n2, are quite different. Haber 
(1986b) obtained similar conclusions both for com- 
paring binomials and for multinomial sampling 
over the four cells. Hirji (1991) showed that, for 
tests of parameters in conditional logistic models 
for case-control designs with unmatched binary 
covariates, mid-p adjustments to an exact test per- 
form well in approximating nominal levels com- 
pared to the exact test and asymptotic score tests. 

Analogous remarks apply to "exact" interval es- 
timation. Although necessarily conservative, "ex- 
act" interval estimates for the odds ratio can be so 
highly conservative as to be less useful than 
asymptotic large-sample approaches in terms of 
long-run coverage performance. An adaptation of 
Cornfield's "exact" method uses a mid-p adjust- 
ment, choosing 0 endpoints that have one-sided 
mid-p values of a /2. This approach does not guar- 
antee the desired coverage probability, but simula- 
tions by Mehta and Walsh (1992) showed that it 
performs well in this respect. For small samples, 
the mid-p-adjusted intervals can be much narrower. 
For instance, for Fisher's tea-tasting data, having 
rows (3, 1/1, 3), the "exact" 95% confidence inter- 
val is (0.21,626.2), and the mid-p-based 95% confi- 
dence interval is (0.31,308.6). Vollset, Hirji and 
Afifi (1991) showed similar good performance of the 
mid-p approach for interval estimation of parame- 
ters in conditional logistic designs. 

8.2 Exact Unconditional Approach 

Other methods for 2 x 2 tables have been moti- 
vated by the controversy about the conditioning 
argument and the conservativeness of Fisher's ex- 
act test. Some authors argue that it is better to use 
a robust asymptotic test than a possibly highly 
conservative exact test (e.g., D'Agostino, Chase 

and Belanger, 1988). Others recommend using an 
"exact" unconditional test. 

To illustrate the latter approach, consider testing 
Tr = 72 (0 = 1) for two independent binomial sam- 
ples. One first computes an exact p-value P(Qr) for 
each possible common value -r of r1 and _r2. For 
this p-value, one might use the product binomial 
probability that a z statistic (or chi-squared statis- 
tic) for comparing two proportions is at least as 
large as observed, when i- is the value of the 
nuisance parameter. The global p-value for the test 
with unknown xr is then P = sup, P(w). Proposed 
by Barnard (1945, 1947), this test was disavowed 
by him in later publications (e.g., Barnard, 1949, 
discussion of Yates, 1984). Boschloo (1970), McDon- 
ald, Davis and Milliken (1977), Suissa and Shuster 
(1984, 1985), Haber (1986a, 1987, 1989), Shuster 
(1988) discussed computational implementation of 
the unconditional test. Suissa and Shuster (1991) 
extended it to comparisons of dependent propor- 
tions for matched pairs. 

The 2 x 2 table having entries (3,0/0,3), dis- 
cussed by Barnard (1945) and Fisher (1945) [see 
also Little (1989) and Routledge (1990)], illustrates 
that results with the conditional and unconditional 
approaches can be quite discrepant. For H1: 0 ? 1, 
the Fisher p-value is 2()() /( 3 ) = 0.100, and the 
asymptotic Pearson chi-squared test has a p-value 
of 0.014. For the exact binomial test of Xr1= 7r2 
having only fixed row totals (3,3), the Pearson 
chi-squared value of 6.0 that occurs for the ob- 
served table and for table (0,3/3,0) is the maxi- 
mum possible, and the p-value for given nuisance 
parameter -r is 2 ir3(1 - 7r)3. The supremum of this 
over 0 < 7r < 1 occurs at 7r = 1/2, giving p-value = 
1/32. This unconditional p-value is related to 
Fisher conditional p-values by 

6 
p(X2 2 6)= Z p(X2 2 6 1 n+1 = k)P(n+l = k). 

k=O 

But the conditional probability that X2 2 6 is zero 
except when n+ 1 = 3, so the unconditional p-value 
is a weighted average of the Fisher p-value for the 
observed column marginals and p-values of 0 corre- 
sponding to the impossibility of getting results as 
extreme as observed if other marginals had oc- 
cured, that is, 1/32 = 0.10 [(6 )(1/2)6], where the 
term in brackets is the binomial probability (when 
7r= 1/2) of the column marginals (3,3). Fisher 
(1945) remarked, "It is my view that the existence 
of these less informative possibilities should not 
affect our judgment of significance based on the 
series actually observed... . The fact that such an 
unhelpful outcome as these might occur, or must 
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occur with a certain probability, is surely no reason 
for enhancing our judgment of significance in cases 
where it has not occurred;... it is only the sam- 
pling distribution of samples of the same type that 
can supply a rational test of significance." 

The unconditional test is so computationally in- 
tensive that it seems complex to extend it to larger 
contingency-table problems (Mehta and Hilton, 
1990). In addition, removing nuisance parameters 
by taking a supremum may itself produce quite 
conservative analyses for tables having larger 
numbers of such parameters. It should be noted 
that asymptotic procedures can also be quite con- 
servative. For instance, Koehler and Larntz (1980) 
noted that the likelihood-ratio test tends to be 
highly conservative when most expected frequen- 
cies are smaller than 0.5. To illustrate, consider 
the 3 x 9 table (0, 7, 0, 0, 0, 0, 0, 1, 1/1, 1, 1, 1, 
1, 1, 1,0,0/0,8,0,0,0,0,0,0,0), discussed in the 
StatXact manual. For the likelihood-ratio statistic, 
the asymptotic p-value is 0.0837 and the exact 
p-value is 0.0015; for the Pearson statistic, the 
values are 0.1342 and 0.0013. 

8.3 Bayesian Approaches 

For 2 x 2 tables, Bayesian approaches using cer- 
tain "conservative" prior distributions give results 
equivalent to conditional tests. For instance, Al- 
tham (1969) gave an exact Bayesian analysis com- 
paring parameters for two independent binomial 
samples. She tested Ho: 7r1 s 7r2 against 7r1 > 7r2 
using a beta(aig, fi) prior distribution for -xi; i.e., 
the prior for -xi is proportional to (7ri)a(l - -xi)f 
with a = a i - 1 and43 = oi - 1, i = 1,2. The pos- 
terior distributiqns are beta(ac, 13) with ac = ai + 
nil and Oi = 1i + ni2. Taking the Bayesian p-value 
to be the posterior probability that 'r1 < 7r29 Al- 
tham showed this equals the one-sided p-value for 
Fisher's exact test when one uses improper prior 
distributions (a1, 01) = (1, 0) and (a2, 02) = (0, 1). 
This represents prior belief favoring the null hy- 
pothesis, in effect penalizing oneself against con- 
pluding that 7r1 > 7r2. If Cai = 3i = y, i = 1, 2, where 
0 s -y ' 1, Altham showed that the Bayesian p- 
value is smaller than the Fisher p-value, and the 
difference between the two is no greater than the 
null probability of the observed data. 

Altham (1971) also gave Bayesian analyses for 
dependent proportions. For a simple model in which 
the probability of success is the same for each 
subject at a given occasion, 'she again showed that 
the classical p-value is a Bayesian p-value for a 
prior distribution favoring the null hypothesis. For 
a model similar to Cox's, in which the probability 
of success varies by subject but the occasion effect 

is constant, she showed that the Bayesian evidence 
against the null is weaker as the number of pairs 
giving the same response at both occasions in- 
creases, for fixed n12 and n21. This result differs, 
and is perhaps more intuitively pleasing, than the 
exact conditional ML result. For examples of other 
Bayesian analyses for 2 x 2 tables, see Leonard 
(1975), Chen and Novick (1984) and Nurminen and 
Mutanen (1987). 

9. FUTURE RESEARCH 

By the turn of the century, we should see ad- 
vances in applicability of exact methodology for 
contingency tables at least comparable to those of 
the past decade. One does not need a crystal ball to 
predict that computer speed will continue to in- 
crease and algorithms will be further improved, so 
that tables not now feasible for analysis soon will 
be. In addition, it is reasonable to expect develop- 
ment of algorithms to handle new types of categori- 
cal data, in particular, more complex relationships 
for larger tables in higher dimensions. 

This article has emphasized exact inference for 
contingency tables in the context of loglinear mod- 
eling. I believe that presenting the methods in the 
context of inference for parameters in models helps 
to unify a variety of exact conditional methods. It 
also helps to identify areas in which additional 
research would yield fruitful results, such as exact 
inferences for I x J x K tables and a general good- 
ness-of-fit test for loglinear models. This section 
summarizes other avenues for future research. 

An important but difficult area for future re- 
search is exact analysis of model parameters for 
contingency tables that are large and sparse. For 
such data, standard asymptotic methods behave 
poorly; yet, it has been impractical to apply exact 
methods. The size of the conditional reference set is 
often too large to handle when the table has a large 
number of cells. This can also happen when the 
table is small but contains very large as well as 
small cell counts. For such problematic tables, there 
should be additional research on (1) hybrid algo- 
rithms that use exact methods for some parts of the 
computation and approximations for other parts 
(Baglivo, Olivier and Pagano, 1988), (2) fast ways 
of simulating the exact distribution (Kreiner, 1987; 
Mehta, Patel and Senchaudhuri, 1988), and (3) bet- 
ter asymptotic approximations (e.g., Koehler, 1986), 
including saddlepoint approximations (Davison, 
1988; Booth and Butler, 1990; Bedrick and Hill, 
1992; Pierce and Peters, 1992). 

An area in which large, sparse tables commonly 
occur is modeling of longitudinal data with categor- 
ical responses. Conditioning on sufficient statistics 
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to eliminate nuisance parameters, such as subject 
random effects, can be very helpful. Even then, 
the large number of cells in the table make exact 
methods or approximations for them quite chal- 
lenging. Another complication is that some useful 
models do not have reductions of data through 
sufficiency, such as loglinear and logistic models 
for the marginal probabilities rather than joint cell 
probabilities. 

An area that has scope for lots of additional work 
is exact inference for I x J x K tables. Section 4.4 
described several exact inferences for standard log- 
linear models. Other exact inferences are of inter- 
est when at least one variable is ordinal. In testing 
conditional independence, one could use test statis- 
tics designed to improve power for narrower alter- 
natives. For instance, Section 4.4 discussed the 
possibility of testing conditional independence 
against a linear-by-linear alternative. WVhen X is 
nominal and Y is ordinal, one could use a statistic 
analogous to a stratified Kruskal-Wallis statistic. 
Such a statistic results from comparing (XZ, YZ) to 
a loglinear model in which the X-Y partial associa- 
tion term has the form yiyj, for parametric row 
effects {I A} and rank scores { yj}. Efficient score 
statistics for these cases are equivalent to statistics 
proposed by Birch (1965) and Landis, Heyman and 
Koch (1978) for large-sample testing of conditional 
independence. Similar remarks apply to exact tests 
of no three-factor interaction. Greater power for 
narrower alternatives (unsaturated models for 
three-factor interaction) would be achieved by 
using statistics that treat one, two or all three 
variables as ordinal.- 

Of course, exact inferences for standard loglinear 
models and for models recognizing ordinality are 
also relevant for four-way and higher dimensional 
tables. Many tests of mutual independence or con- 
ditional independence can be re-expressed in terms 
of two-way or three-way tables, but not all. Also, 
complications may result in tests about three-factor 
and higher order interactions. The reference set of 
tables having the required fixed marginals may be 
difficult to generate or simulate. For instance, in a 
four-way table, an exact test of no three-factor in- 
teraction deals with a reference set in which all six 
two-way margins are fixed. 

There is unlikely to be as much controversy with 
exact conditional methods for models for higher 
dimensional tables as there has been with Fisher's 
exact test for 2 x 2 tables. That controversy is 
probably due less to philosophical disagreements 
about conditioning than to practical consequences 
of using' continuously defined measures such as 
p-values with highly discrete distributions. Except 

in extreme cases in which nearly all observations 
fall in one or two marginal categories for each 
classification, sampling distributions are much 
"less discrete" for larger tables. As the number of 
dimensions or the number of response categories 
per dimension increases, the sampling distributions 
that determine exact tests and confidence inter- 
vals rapidly approach a continuous form. Thus, the 
conservativeness of the inferences becomes less 
problematic. For instance, performance of exact 
conditional tests should be closer to that of their 
randomized versions, many of which are UMPU. 
Also, the three approaches discussed for confidence 
intervals for odds ratios (test-based with aC/2 in 
each tail, adapted Sterne, test-based with mid-p 
values) should all have true confidence levels close 
to the nominal one. 

For cases in which discreteness is problematic, 
there should be more work on developing adapta- 
tions of exact methods that, while perhaps sacrific- 
ing "exactness," give performance closer to the 
randomized exact versions. Examples are adapta- 
tions of exact tests and confidence intervals using 
the mid-p value (e.g., Hirji, Tan and Elashoff, 1991; 
Mehta and Walsh, 1992), and tests and confidence 
intervals that use the exact distribution computed 
at the ML estimate of the nuisance parameter (e.g., 
Conlon and Thomas, 1990; Storer and Kim, 1990). 

So far there has been relatively little attention 
paid to algorithms for calculating power for exact 
conditional tests. The literature refers almost ex- 
clusively to 2 x 2 tables. For instance, Gail and 
Gart (1973), Haseman (1978) and Suissa and 
Shuster (1985) discussed the determination of sam- 
ple size for obtaining desired powers in fixed-a use 
of Fisher's exact test. 

Finally, it would be very useful to have a gen- 
eral-purpose algorithm for exact tests comparing 
two nested loglinear models. This would unify ex- 
act tests of goodness of fit for all loglinear models, 
as well as tests against unsaturated alternatives. 

In summary, much has been accomplished in the 
past decade, but this is only the tip of the iceberg 
of what can be done. In the future, statistical prac- 
tice for categorical data should place more empha- 
sis on "exact" methods and less emphasis on 
methods using possibly inadequate large-sample 
approximations. 
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Comment 
Edward J. Bedrick and Joe R. Hill 

We congratulate Professor Agresti for his com- 
prehensive review of exact inference with cate- 
gorical data. We share his enthusiasm for exact 
conditional methods and believe that the coming 
years will produce many important computational 
breakthroughs in this area. 

The mechanics of conditioning on sufficient 
statistics to generate reference distributions for es- 
timation, testing and model checking with loglin- 
ear models for Poisson data and logistic regression 
models for binomial data are well-known, but the 
utility of conditioning in these settings is not uni- 
versally agreed upon. Furthermore, the role of con- 
ditioning in the analysis of discrete generalized 
linear models with noncanonical link functions has 
received little attention from most of the statistical 
community. As a result, scientists and statisticians 
are familiar with conditional methods, but many 
are unsure how such methods should be incor- 
porated into an overall strategy for analyzing cate- 
gorical data. We feel that the use and abuse of 
conditional methods will not be fully understood or 
appreciated without such a strategy. We hope that 
Professor Agresti's survey and the ensuing discus- 
sions stimulate further work in this direction. 

Edward J. Bedrick is an Assistant Professor, De- 
partment of Mathematics and Statistics, University 
of New Mexico, Albuquerque, New Mexico 87131. 
Joe R. Hill is an R&D Specialist at EDS Research, 
5951 Jefferson Street, NE, Albuquerque, New 
Mexico 87109. 

CHECKING LOGISTIC REGRESSION MODELS 

We would like to convey some of our recent work 
on model checking for logistic regression and some 
of our thoughts regarding conditional inference. 
For the sake of simplicity, we assume that a single 
model is under consideration. A little notation is 
required. The usual logistic regression model has 
two distinct parts: a sampling component and a 
structural component. The sampling component 
specifies that Y = (Y1, . . ., Yn)' is a vector of inde- 
pendent binomial random variables with Yi- 
Bin(mi, -xi). The structural or regression compo- 
nent of the model is given by 

(1) logit (7r) = Xf, 

where logit(-r) is an n x 1 vector of log-odds with 
elements log{ri /(1 - iri)}, X is an n x p full- 
column rank design matrix with ith row x', and A 
is a p x 1 vector of unknown regression parame- 
ters. Under model (1), S = X' Y is sufficient for A. 
Let k' be the MLE of ir under this model. 

The distribution of the data pr(Y; A), indexed by 
A, can be factored into the marginal distribu- 
tion of the sufficient statistic S, and the condi- 
tional distribution of the data given the sufficient 
statistic: 

pr(Y;fA) = pr(Y I S)pr(S;fl)A 

Taking a Fisherian point of view (Fisher, 1950), 
inferences about j3 are based on pr(S; j3), whereas 
model checks use the conditional distribution 
pr(Y I S). Letting Sobs = X'YObS be the observed 
value of the sufficient statistic for the logistic model, 
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