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Abstract. Goodman (1979) proposed a class of diagonals-parameter symmetry models for square contingency tables with 
ordered categories, A simple version of that model is considered in which the log odds parameters have a linear pattern. The 
model is also a simple quasi-symmetry model. It fits well when there is an underlying bivariate normal distribution. 
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1. Introduction 

Suppose that an r × r contingency table ha~ the 
same ordered categories in the row classification as 
in the column classification. Let %j denote the 
probability that an observation falls in the cell in 
row i and column j.  For this setting, Goodman 
(1972, 1979) discussed the diagonal-parameter 
symmetry (DPS) model, 

97ij -~" qtji6i_j, i >j. (I.I) 

The parameter 6 k represents the odds that an 
observation falls in a cell ( i , j ) ,  satisfying i - j  -- k, 
instead of in the cell ( j ,  i), k = 1 . . . .  , r - 1. In this 
model it is assumed that these odds depend only 
on the distance between the diagonal containing 
the cell and the main diagonal. 

In the DPS model no assumption is made about 
the form of the odds parameters. In certain situa- 
tions a more structured form for the (Sk), giving a 
more parsimonious model, may better describe 
predicted departures from the symmetry case (8 k 
= 1). The conditional symmetry model 

• l'ijmell'ji~ , i>j,  

is one simplification of the DPS model that has 
received some attention (Bishop et al., 1975, pp. 
285-286; McCullagh, 1978). This model implies 
that for i > j ,  

P(X=i ,  Y=jIX> Y ) = P ( X = j ,  Y=iIX< r) ,  

where (X, Y) is selected at random according to 
the (~rij) distribution. In many applications it may 
be more realistic to expect monotonicity in the 
(61,). In this article we consider a simple version of 
model (1.1) in which the (log 61,) have a linear 
pattern. 

2. Linear diagonals-parameter model 

Consider the model 

~ r i j  = ~Tji ~'-j, i >__-j, (2.1) 

which is the special case of the DPS model in 
which 6 k - -8  k, k = 1,... ,  r -  1. Here, the log odds 
that an observation is a certain distance above the 
main diagonal, instead of the same distance below 
it, is assumed to depend linearly on the distance. 
Like the conditional symmetry model, this model 
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has only one more parameter than the symmetry 
model, which is the special case 8 = 1. Both mod- 
els imply a stochastic ordering of the marginal 
distributions. Though both models are so simple 
that they are inadequate for describing most square 
tables, there is an important setting in which model 
(2.1) has theoretical justification. For ordinal 
matched-pairs data, it is often reasonable to as- 
sume an underlying continuous distribution that is 
approximately bivariate normal with equal margi- 
nal standard deviations. The joint normal density 
satisfies 

f ( x ' Y ) = s x - Y  for x >~y, 
/(y,x) 

the form given by model (2.1) for the discrete case. 
Model (2.1) is a loglinear model, and it can be 

expressed in terms of expected frequencies (m~j) 
as  

log m,j = # + )~, + Aj + fl(i  - j )  + h,j, (2.2) 

where, for all i and j ,  

~kij = ~ji' E~ki = Exi j  = 0,  2fl = log 8. 
i i 

For full multinomial or independent Poisson sam- 
pling, maximum likelihood estimates for model 
(2.2) can be easily obtained using the Newton- 
Raphson method. The sample frequencies (nij) 
and expected frequency estimates satisfy, for all i 
and j, 

l~ l i i=  n i i ,  rh i j  + l~lji~- t l i j  + t l j i ,  

Eirh i+=Ein i+ ,  Ej . = E j . . .  

Notice that equal-interval scoring of categories 
implies that the observed and fitted marginal dis- 
tributions have the same means. More generally, 
the integer scores in this model can be replaced by 
fixed by monotonic scores. In either case, the 
Pearson X 2 or likelihood-ratio G 2 statistics have 
d f = ½ ( r +  1 ) ( r - 2 )  for testing goodness of fit, 
compared to d f =  ½ ( r -  1 ) ( r -  2) for the general 
DPS model. The estimate of fl in model (2.2) can 
also be obtained by fitting the no-intercept logit 
model log(mu/mj i )  f 2 f l ( i - - j ) ,  regarding the 
(n,j, i >j}  as ½r(r -- 1) independent binomial ran- 
dom variables with sample sizes (nij + nj~). 

Model (2.2) is a special case of the quasi-sym- 

metry model for square tables, 

log rnij = ! .t + Xx + XY + Xij, 

where EX, x = Ekv,. = ~,i~ki/= 0 and Xij = kji. Like 
the general DPS model, this model has d r =  
½ ( r - 1 ) ( r - 2 ) .  Breslow (1982) and McCullagh 
(1982) expressed the quasisymmetry model in 
Bradley-Terry paired comparison form with the 
logit model 

log(~rij/%i) = f l , -  f l j ,  (2.3) 
where (fli = ha'. - ) L  r + c) for any constant c. Mc- 
Cullagh suggested that linear or quadratic patterns 
should be considered for the (flj) in this model 
when the table has ordered categories. In fact, 
model (2.3) corresponds to model (2.1) when ~.+, 
- flj takes constant value for j = 1,.. . ,  r - 1, that 
value being log 8 in model (2.1). The linear DPS 
model is palindromic invariant, unlike the general 
quasi-symmetry model which is fully permutation 
invariant, ignoring the ordering of categories. 

3.  E x a m p l e s  

The linear DPS model generally gives a good fit 
when there is an underlying bivariate normal dis- 
tribution. For example, suppose that the parame- 
ters of that distribution satisfy 

# r = # x + 0 . 2 ,  a x = O r = o ,  0=0 .2 ,  

and suppose that a 6 x 6 table is formed using 
cutpoints for each variable at #x, #x + 0.60 and 
#x + 1.2o. Cell counts in the pattern of the result- 
ing probabilities would yield 8 = 1.37 and a Pear- 
son chi-squared statistic, having d f -  14, of only 
14 per 100000 observations. By comparison, the 
corresponding chi-squared value for the condi- 
tional symmetry model is 484 per 100000 observa- 
tions. 

Breslow used the quasi-symmetry model (2.3) to 
analyze Table 1, in which 80 esophageal cancer 
patients are compared with controls on the num- 
ber of beverages reported drunk at 'burning hot' 
temperatures. T akirtg /~n =0 ,  he obtained the 
estimates #2=0.737, /~3 = 1.299 and # , =  2.573, 
and X 2 = 2.45 with dfffi 3. Essentially as good a fit 
is given by the simpler linear DPS model, for 
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Table 1 
Distribution of esophageal cancer case-control pairs by number of beverages drunk 'burning hot'. Estimated expected frequencies in 
parentheses for: (a) linear DPS, (b) quasi-symmetry models 

Case Controls 

number 0 1 2 3 

0 31 5 5 0 
- (5.6 a, 5.5 b) (3.6, 4.1) (0.6, 0.4) 

1 12 1 0 0 
(ll.4, 11.5) - (0.3, 0.4) (0.2, 0.1) 

2 14 1 2 1 
(15.4, 14.9) (0.7, 0.6) - (0.7, 0.4) 

3 6 1 l 0 
(5.4, 5.6) (0.8, 0.9) (1.3, 1.6) - 

which X 2= 2.41, based on d f =  5. The assumed 
common value of (flj+ i - f l2 )  in the linear DPS 
model is estimated by log 8 = 0.723. Hence, the 
probability that a case drank k more beverages 
burning hot than did the control is estimated to be 
(2.06) k times the probability that the control drank 
k more beverages burning hot than did the case. 
The log 8 value divided by its asymptotic standard 
error of 0.215 gives strong evidence that the 
esophageal cancer patients tended to drink more 
beverages burning hot than did controls. Most cell 
counts are very small in Table 1, thus one should 
be cautious in applying any asymptotic approxi- 
mations. However, it can be pointed out that the 
estimated expected frequencies given in that table 
show adequate and similar fits for both models 
with the linear DPS model having the advantages 
of parsimony and simple interpretation. The gen- 
eral DPS model fits only slightly better, with X 2 = 
1.16 based on d r =  3. 

McCullagh (1978) and Goodman (1979) il- 

lustrated their models using the data in Table 2 on 
unaided distance vision of 7477 women. For those 
data, the quasi-symmetry model has ~(2 = 7.26 with 
d f =  3, the conditional symmetry model has X 2 = 

7.23 with d f =  5, and the linear DPS model has 
X 2= 7.27 with d f =  5. The maximum likelihood 
estimate of 8 in (2.1) is 0.898. Hence, the proba- 
bility that left eye vision is k grades higher than 
right eye vision is estimated to be (0.898) k times 
the probability than left eye vision is k grades 
lower than right eye vision. The standard error of 
/) = (½)log 8 = 0.054 in expression (2.2) is 0.016, 
so that the grade distribution is significantly lower 
for the left eye. 

The estimated expected frequencies in Table 2 
show that the fit is again essentially the same for 
the linear DPS and quasi-symmetry models, though 
the linear DPS model is more parsimonious. Both 
models give negative residuals in the cells (i , j)  
with i - j  = 1 or 3, and positive residuals in the 
cells with i - j  = 2. The corresponding residuals 

Table 2 
Unaided distance vision of women. Estimated expected frequencies in parentheses for: (a) linear DPS, (b) quasi-symmetry models 

Right eye grade Left eye grade 

best second third worst 

best 1520 266 124 
- (263.4 a, 263.4 b) 033.4, 133.6) 

second 234 1512 432 
(236.6, 236.6) - (418.2, 419.0) 

third 117 362 1772 
(107.6, 107.4) (375.8, 375.0) - 

worst 36 82 179 
(42.9, 43.0) (71.5, 71.6) (181.7, 182.4) 

66 
(59.1, 59.0) 
78 

(88.5, 88.4) 
205 

(202.3, 201.6) 
492 
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above the main diagonal have opposite signs, be- 
cause of the constraint rh~j + rhj~ = n~j + n j r  
Goodman (1979) noted that the pattern in Table 2 
is explained by the estimates 8~ = 0.86, ~2 = 0.99, 
83 = 0.55, obtained for the general DPS model. 
For these data the general model gives a better fit, 
with X 2= 0.50 with d r =  3. However, it can be 
argued that the simpler linear DPS and condi- 
tional symmetry models are also adequate, consid- 
ering the large sample size. 
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