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In many applications observations have some type of clustering,
with observations within clusters tending to be correlated. A com-
mon instance of this occurs when each subject in the sample un-
dergoes repeated measurement, in which case a cluster consists of
the set of observations for the subject. One approach to modeling
clustered data introduces cluster-level random effects into the
model. The use of random effects in linear models for normal re-
sponses is well established. By contrast, random effects have only
recently seen much use in models for categorical data. This chap-
ter surveys a variety of potential social science applications of
random effects modeling of categorical data. Applications dis-
cussed include repeated measurement for binary or ordinal re-
sponses, shrinkage to improve multiparameter estimation of a set
of proportions or rates, multivariate latent variable modeling, hi-
erarchically structured modeling, and cluster sampling. The mod-
els discussed belong to the class of generalized linear mixed models
(GLMMs), an extension of ordinary linear models that permits non-
normal response variables and both fixed and random effects in the
predictor term. The models are GLMMs for either binomial or Pois-
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son response variables, although we also present extensions to
multicategory (nominal or ordinal) responses. We also summarize
some of the technical issues of model-fitting that complicate the
fitting of GLMMs even with existing software.

1. INTRODUCTION

Response variables in social science studies, particularly those dealing
with opinions and attitudes, are often measured on categorical scales. For
many years, to model such data it was common to use ordinary least-
squares methods, either for the original scale or some transformation for
which the variance tends to be more stable. Recently it has become more
common to use models designed specifically for categorical variables, such
as logistic regression for binomial responses, generalized logit models for
multinomial responses, and log-linear models for Poisson responses.

In many applications, however, the dependence structure is more
complex than the independent observations assumed by ordinary models
for categorical or continuous variables. In particular, observations often
exhibit a clustering, with observations within clusters being correlated. A
common instance of this occurs with repeated measurement on each sub-
ject in the sample, in which case a cluster consists of the set of observations
for a given subject and those observations are typically positively correlated.

For continuous variables, the multivariate normal distribution pro-
vides considerable flexibility for describing dependencies. For categorical
variables, there is no natural analog of the multivariate normal distribu-
tion, which makes the specification of models somewhat awkward. One
solution to this introduces cluster-level terms into the model. These terms
are unobserved and, varying randomly among a sample of clusters, are
calledrandom effects. For instance, with linear models for repeated mea-
surement, it is often effective to add a random effectui to the predictor of
the response for clusteri . If ui is positive, the observations within that
cluster have a larger mean than otherwise, whereas ifui is negative, the
observations within that cluster have a smaller mean than otherwise. Con-
sidered over clusters, this induces a positive within-cluster association.

1+1+ Generalized Linear Mixed Models

Parameters in ordinary linear models are said to befixed effects. They
apply toall the levels of interest (e.g., gender, race, political party affili-
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ation), whereas random effects apply to asampleof all the possible clus-
ters. The use of random effects in linear models for normal responses is
well established (e.g., see Searle, Casella, and McCulloch 1992). By con-
trast, only recently have random effects seen much use in models for cat-
egorical responses. We survey here a variety of potential applications of
random-effects modeling for social science research.

The class ofgeneralized linear models(GLMs) extends ordinary
regression models in two ways: (1) it allows for nonnormal responses, and
(2) it allows modeling a function of the mean rather than the mean itself.
This extension is important for categorical data. For such data, one as-
sumes a binomial or Poisson distribution for the response rather than nor-
mal. Also, one usually models the logit of a probability or the logarithm of
an expected count instead of the probability or expected count itself (e.g.,
so that predictions are necessarily on the proper scale, and so that an ad-
ditive effects model is more likely to fit well). Thegeneralized linear
mixed model, which we denote by GLMM, is a further extension that per-
mits both fixed and random effects in the predictor rather than only fixed
effects. The models discussed here are GLMMs for either binomial (or
multinomial) or Poisson response variables.

1+2+ Applications of GLMMs

Early applications of GLMMs occurred in the psychometrics literature, in
the context ofitem-response models, generalizing theRasch model(Rasch
1961). For a set of subjects and test items, the Rasch model states that the
probability pij that subjecti makes the correct response on questionj
satisfies

logit~pij ! 5 ui 1 bj+ (1)

In estimating$bj % , Rasch promoted the fixed-effects approach ofcondi-
tional maximum likelihood. This method eliminates$ui % from the analysis
by conditioning on their sufficient statistics, yielding a likelihood function
that depends only on$bj % . Later authors used a random-effects approach
with this model and the corresponding probit model by treating$ui % as
having a normal distribution (e.g., see Bock and Aitkin 1981; Stiratelli,
Laird, and Ware 1984).

As mentioned above, random effects can represent clustering in a
sample. Section 3 shows several examples of this type. Often the clusters

RANDOM-EFFECTS MODELING OF CATEGORICAL DATA 29



result from repeated measurement, representing a set of observations on
the same subject at different times or on different components of a re-
sponse variable. In Section 3.2, for instance, subjects indicate whether or
not they support legalized abortion in each of three situations; in Section
3.7, subjects indicate whether government spending should increase, stay
the same, or decrease, on items related to environment, health, law en-
forcement, and education. In other cases the clusters may result from clus-
tering in a multistage sample, as shown in the Section 3.8 example regarding
a survey about household satisfaction. Random-effects modeling is also
useful when parameters such as proportions or rates for a large number of
geographical areas may share some common features. In estimating the
parameters with a random-effects model, one effect is shrinkage of sepa-
rate sample values toward a common value, which can result in dramati-
cally improved estimators in an overall sense. Section 3.1 illustrates this
with the use of survey data to estimate simultaneously the proportion fa-
voring a presidential candidate in each of the 50 states. We also show
applications such as hierarchically structured modeling (Section 3.4), and
handling effects (such as clinics, schools, hospitals) for which the data
may have only a sample of the possible levels (Section 3.3). We also present
extensions to multicategory (nominal or ordinal) responses.

Random effects are sometimes regarded as unobserved responses
on variables. In model (1), for instance,ui might represent the unknown
“ability” of subject i in answering the test items. More generally, models
that have unobserved variables of a variety of types are, in essence, random-
effects models. For instance, random-effects terms have been used in mod-
els to represent omitted explanatory variables and random measurement
error in the explanatory variables (e.g., Follmann and Lambert 1989). Re-
lated to this, random effects also provide a mechanism for explainingover-
dispersion(e.g., see Breslow and Clayton 1993)—the presence of greater
variability in the data than the sampling model predicts. In fact, another
strand of literature on random effects for count data developed as a way of
handling overdispersion. This literature discussed alternative mixture mod-
els such as thebeta-binomialas well as relatedquasi-likelihoodmethods
that allowed greater variance than the standard sampling models but with-
out assuming a particular parametric distribution (e.g., Williams 1982).

In recent years GLMMs have become increasingly popular in ap-
plications in fields such as education (e.g., Goldstein 1991, 1995; Bryk
and Raudenbush 1992) and medicine (e.g., Daniels and Gatsonis 1999).
They have also been receiving increased attention in social science re-
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search. Published work using GLMMs includes the following: Nee (1996)
used GLMMs to analyze data from a multistage, multilevel nationwide
social survey of households in rural China; Sampson, Raudenbush, and
Earls (1997) employed these models to construct and evaluate measures of
neighborhood social organization in a study of the relationship between
social cohesion among neighbors and crime; Langford (1998) used a
GLMM to model an individual’s “willingness to pay” to prevent saline
flooding in the East Anglian region of England as a function of the cost;
and Murphy and Wang (1998) used a GLMM in a discrete-time hazards
context to handle cluster effects of children sampled having the same
mother. Other references that used a GLMM include Raudenbush, Rowan,
and Kang (1991); Langford (1994); McArdle and Hamagami (1994); Cong-
don (1996); Murray, Moskowitz, and Dent (1996); Saunderson and Lang-
ford (1996); Jones, Gould, and Watt (1998); Hedeker, Gibbons, and Flay
(1994); Gibbons and Hedeker (1994); Gibbons, Hedeker, Charle, and Frisch
(1994); Enberg, Gottschalk, and Wolf (1990); Daniels and Gastonis (1997);
Akin, Guilkey, and Sickles (1979); Henretta, Hill, Li, Soldo, and Wolf
(1997); Montgomery, Richards, and Braun (1986); Tsutakawa (1988); Wong
and Mason (1985); Albert (1992); and Anderson and Aitkin (1985). We
hope that the examples shown here will stimulate further uses of random-
effects modeling in the social sciences.

1+3+ Scope of This Article

Section 2 describes the general form of GLMMs for categorical response
variables, with focus on binomial or Poisson responses. Section 3 is the
heart of the paper, showing a variety of applications of random-effects
modeling. Maximum likelihood (ML) is used for all of the model fitting in
our examples. The basic ideas underlying ML fitting and inference are
given in Section 4 along with a description of some alternative (approxi-
mate) fitting methods.

In some applications the random effects part of the model is a mech-
anism for representing how correlation occurs between observations within
a cluster, yet the main interest is in estimating fixed effects, in which case
the parameters pertaining to the random effects arenuisance parameters.
Often though, those parameters are themselves of interest, for instance to
characterize the degree of heterogeneity of a population. More generally
one may be interested in combinations of fixed and random effects, in
order to predict responses, as illustrated in Section 3.1. Some details re-
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garding the prediction of random effects are given in Section 4.5. The
GLMM discussed in this paper leads to conditional (i.e.,subject-specific)
interpretations of the regression parameters. Section 5 presents a discus-
sion of a related class of models for the estimation of marginal (i.e.,
population-averaged) effects.

Software for GLMMs is still limited. The results given here were
obtained using PROC NLMIXED in SAS (available beginning in version
7), which uses numerical integration for approximating the likelihood func-
tion. Section 6 discusses available software and cautions one should fol-
low in using it. Finally, our conclusions are stated in Section 7.

2. RANDOM-EFFECTS MODELS
FOR CATEGORICAL DATA

We first introduce some general notation that applies to the examples pre-
sented here. Letyij denote thej th response in clusteri, i 5 1, + + + , I, j 5
1, + + + , ni . Let x ij denote a column vector of values of a set of explanatory
variables for thej th response in clusteri , which serve as coefficients of
fixed effects in the model. Letzij denote a corresponding vector of coef-
ficients of random effects. Note that these sets of coefficients need not be
identical for all observations in a cluster. Letu i denote the vector of ran-
dom effect values for clusteri . Conditional onu i , a GLMM resembles an
ordinary GLM. Letm ij 5 E~ yij 6u i ! denote the mean of the conditional
distribution ofyij givenu i . Denote the variance of the conditional distri-
bution by Var~ yij 6u i ! 5 fij v~m ij ! , where typicallyfij 5 f0wij with the
wij ’s being known “weights” andf being an unknown dispersion param-
eter, and the functionv is called thevariance function.

The linear predictor for a GLMM has the form

g~m ij ! 5 x ij
t b 1 zij

t u i , (2)

whereg~{! is a link function (such as the logit for binary data and the log
for count data), at superscript denotes the transpose of a vector, andu i is
usually assumed to have a normal distribution. In (2), the random effect
enters the model on the same scale as the predictor terms. This is conve-
nient but also natural for the many applications in which the random effect
partly represents unmodeled heterogeneity caused by not including cer-
tain important explanatory variables.
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2+1+ A GLMM for Two Dependent Binomial Samples

We illustrate this general expression for a GLMM using perhaps the sim-
plest example of a random-effects model for categorical response data:
binary matched pairs, yielding two dependent binomial samples. For clus-
ter i , let ~ yi1, yi2! denote the two responses in the matched pair. For in-
stance,yi1 might denote a binary response measured at a particular time,
andyi2 a response on the same outcome scale at a later time, such as when
a sample of subjects is asked at two dates about whether the president is
doing a good job. Suppose that subjecti at timej hasyij 51 (a “success”)
or 0 (a “failure”),j 51,2. Thenm ij is the probability of success. For binary
data, the link functiong is most often the logit transform.

Table 1, from the General Social Survey of 1994, is an example of
matched-pairs data. Subjects were asked “Do you think a person has the
right to end his or her own life if this person has an incurable disease?” and
“When a person has a disease that cannot be cured, do you think doctors
should be allowed to end the patient’s life by some painless means if the
patient and his family request it?” The table, which refers to these vari-
ables as “suicide” and “let patient die,” reports the numbers of “yes” and
“no” responses for each question. The two responses for each subject form
a matched pair. For these matched pairs, consider the model

logit~m i1! 5 a 1 ui , logit~m i 2! 5 a 1 b 1 ui ,

whereui is the value of a random effect for subjecti , with E~ui ! 5 0. This
model allows heterogeneity among the probabilities for each question but
assumes that the logit shifts uniformly for each subject byb for the two

TABLE 1
Opinions About Suicide and Letting

an Incurable Patient Die

Let Patient Die

Suicide Yes No Total

Yes 1097 90 1187
No 203 435 638

Total 1300 525 1825

Source: General Social Survey(1994).
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questions. Thus, for each subject the odds of a “yes” response on letting the
patient die equal exp~b! times the odds of a “yes” response on suicide.
This is the special case of model (2) in whichb t 5 ~a,b!, x i1

t 5 ~1,0! and
x i 2

t 5 ~1,1! for all i andzij 5 1 for all i andj.
The usual random-effects model assumes that$ui % are independent

from aN~0,s2! distribution, withs unknown, and that conditionally on
the$ui % the$ yij % are independent. Unconditionally, variability among$ui %
reflects subject heterogeneity, whereby different subjects have different
probabilities of making a particular response. This variability induces a
positive association between the binomial responses that form the margins
of Table 1, manifested by a nonnegative log-odds ratio for the true cell
probabilities underlying Table 1. This special case of a GLMM in which a
cluster’s random effect affects only the intercept of the model is called a
random intercept model.

This model with logit link provides one of the rare instances in
which a closed-form ML estimate is available for the effectb. When the
sample log-odds ratio in tables that have the structure of Table 1 is non-
negative, it follows from Neuhaus, Kalbfleisch, and Hauck (1994) thatZb
equals the log ratio of counts falling off the main diagonal; here, log(2030
90) 5 .813. For each subject, the estimated odds of a “yes” response on
letting the patient die are exp(.813)5 2.26 times the estimated odds of a
“yes” response on suicide.

With this analysis for the logit model, the estimate of the treatment
effect and subsequent inference does not depend on the other two cell
counts. Matched-pairs data usually display a positive association, with the
majority of the observations falling in these two cells. In Table 1, for in-
stance, 1532 of the 1825 observations make no contribution to the analy-
sis. The model provides justification for McNemar’s test of equality of
matched proportions, which uses only the same counts as doesZb (e.g., see
Agresti and Finlay 1997:231). McNemar’s test is based on a normal ap-
proximation for the probability that a binomial random variable with 901
2035293 trials and parameter .5 takes a value of at most 90 or at least 203.

2+2+ Cluster-Specific Effects for Random-Effects Models

Note that the effectb in the model of Section 2.1 refers to theconditional
log-odds ratio, given the random effect. Thus it has asubject-specificin-
terpretation, being the change in the logit for a given subject. This is not
the same as the marginal (so-calledpopulation-averaged) effect, because

34 AGRESTI, BOOTH, HOBERT, AND CAFFO



of the nonlinearity of the logit link. For instance, in the matched-pairs
model,

E~ yij ! 5 E @E~ yij 6ui !# 5 ES exp@x ij
t b 1 ui #

11 exp@x ij
t b 1 ui #

D,
and this expectation does not have the form exp~x ij

t b!0@1 1 exp~x ij
t b!#

except whenui has a degenerate distribution with a variance of 0. The
estimate ofb from the marginal (unconditional) model is typically smaller
in absolute value than the estimate from the conditional model. The dis-
crepancy between the two increases ass, and hence the correlation be-
tween observations within a cluster, increases. For Table 1, the estimated
marginal log-odds ratio uses the sample marginal distributions, equaling
log[(13000525)0(11870638)]5 .286, compared to the conditional estimate
of .813. Neuhaus, Kalbfleisch, and Hauck (1991) and Zeger, Liang, and
Albert (1988) provided approximate relationships between the two types
of estimate.

Similar remarks apply to any GLMM of form (2). For the probit link
with binary data, however, the conditional probit model with normal ran-
dom effects does imply a marginal model of probit form. In the case of a
univariate random intercept, the conditional model has effect equal to the
marginal effect multiplied by@1 1 s2#102 (Searle et al. 1992:377). For
count data, such as those that occur in estimating rates or expected fre-
quencies in a contingency table, the link functiong is usually the log trans-
form. In that case, the conditional loglinear model with normal random
effect also implies a marginal model of log-linear form. The marginal model
has the same effect but has intercept equal to the conditional one multi-
plied by exp~s202!.

2+3+ Varieties of Ways of Handling Random Effects

In any GLMM, a possibly controversial aspect is the assumption of a par-
ticular parametric distribution for the random effect. By far the most com-
mon choice is normality. For logit random-intercept models, evidence
indicates that other choices usually provide similar results for the regres-
sion effects, with skewed actual distributions for the random effects pos-
sibly having some effect on the intercept estimate (Neuhaus, Hauck, and
Kalbfleisch 1992). When the random effect relates more directly to the
characteristic estimated, the choice of distribution can be more crucial
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(Heckman and Singer 1984).An important advantage of the normal family
is its extension to models with several correlated random effects, in which
case the multivariate normal family is both flexible and simple.

The research literature now has a considerable variety of ways of
handling clustering of various sorts. At first,conjugatemixture models
received most of the attention. These are models that assume a particular
parametric distribution but with the parameter itself coming from a distri-
bution such that the marginal distribution has closed form. For binary data,
one assumes that given the parameter, the response has a binomial distri-
bution, and the parameters follow a beta distribution. This leads to thebeta
binomialmodel (Crowder 1978). For count data, one assumes that given
the parameter the responses are Poisson, and the parameters follow a gamma
distribution. This leads to thenegative binomial model(Lawless 1987;
McCullagh and Nelder 1989). A disadvantage of the conjugate approach is
the lack of generality and flexibility, requiring a different mixture distri-
bution for each type of problem. In addition, the extra variability does not
enter on the same scale as the ordinary predictors. Lee and Nelder (1996)
generalized these models to hierarchical models of GLMM form but in
which the random effect need not be normal.

Finally, there is also some work on a nonparametric random effects
approach, in which instead of choosing a parametric family one uses a
discrete mixture determined empirically (Heckman and Singer 1984; Ait-
kin 1996). We discuss this further in Section 3.5.

3. EXAMPLES OF RANDOM-EFFECTS MODELING

This section, the heart of the paper, shows examples of random-effects
modeling for a variety of types of examples.

3+1+ Example 1: Shrinkage of Proportions

This example involves estimating a large number of proportions with only
small to moderate sample sizes for each proportion.Acommon application
is small-area estimation, in which relatively few observations occur in
each of many geographical areas. For each area, for instance, one might
want to estimate the unemployment rate or the proportion of families not
having health insurance coverage or the proportion of children living in
single-parent families. Random effects models can serve as a mechanism
for improving on the sample proportions in estimating the true area-
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specific proportions. In assuming that those true proportions vary accord-
ing to some distribution, one can use information from all the areas to
estimate the proportion in any given area (Ghosh and Rao 1994).

Let pi denote the true proportion in areai, i 5 1, + + + , I. Let $Yi %
denote independent binomial variates with sample size indices$ni % and
parameters$pi % ; that is, Yi 5 (j51

ni yij , where $ yij , j 5 1, + + + , ni % are
independent withP~ yij 5 1! 5 pi andP~ yij 5 0! 5 1 2 pi . The sample
proportions$ pi 5 Yi 0ni % are the ML estimates of$pi % for the fixed-effects
model

logit~pi ! 5 a 1 bi , i 5 1, + + + , I,

where identifiability requires a constraint such as(bi 5 0 orbI 5 0. This
model is saturated, havingI nonredundant parameters for theI binomial
observations. For small samples, the sample estimates often display much
more variability than the true values, and when$bi % are similar it can be
helpful to shrink the sample proportions toward the overall mean. One can
accomplish this using the random effects model

logit~pi ! 5 a 1 ui , (3)

where$ui % are assumed to be independent from aN~0,s2! distribution.
After estimatinga ands, one estimates logit~pi ! using@ [a1 [ui # , where [ui

is the predicted random effect based on the observed data. Section 4.5
outlines the standard method for computing[ui . This is an example of an
empirical Bayes analysis, which assumes a prior distribution for unknown
parameters and uses the data to estimate parameters of that distribution.
This paradigm has been in use for some time—for instance, using normal
approximations for distributions of sample proportions (Efron and Morris
1975).

To motivate why the random-effects approach can be highly ben-
eficial, we first use an artificial example. ForI coins, letpi denote the
probability of a “head” in a single flip of coini , and suppose$Yi % are
counts of heads based on$ni 5 10% flips of each coin. Probably$pi % are
all close to .50 and the sample data would yield estimates for model (3)
close to [a 5 0 and [s 5 0 (especially ifI is large). In fact, if [s 5 0 the
model fit simplifies to that for the simpler model logit~pi ! 5 a, and
$ [pi 5 ~(h Yh!0~(h nh!%, the overall sample proportion of heads. This
estimate, or estimates that are very close to it (which occur when[s . 0
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but is small) tend to be much better than the separate sample proportions
$ pi 5 Yi 0ni % . Generally, “borrowing from the whole” provides the ad-
vantage of smoothing the sample estimates and effectively basing the
resulting estimates on much larger sample sizes than using the data for
the separate samples on their own. For instance, in the extreme case that
s 5 0 and [s 5 0, the random effects estimate of the common probabil-
ity of a head usesI times as many observations as the separate sample
proportions. Generally, the random-effects estimates provide shrinkage
of the separate estimates toward the overall sample proportion. The
amount of shrinkage decreases as[s or ni grow.

For an illustration based on a more realistic problem, we simulated
a sample to mimic a poll taken before the 1996 U.S. presidential election.
For a sample of sizeni in statei ~i 51, + + + ,51 with i 5 51 being the District
of Columbia), we generatedYi as a binomial variate withpi equal to the
actual proportion of votes in statei for Bill Clinton in the 1996 election,
conditional on voting for Clinton or Dole. We setni proportional to the
population size in that state, subject to(ni 5 2000. The$ni % ranged from
4 to 240. Table 2 shows$ni % , $pi % and$ pi 5 Yi 0ni % .

The MLfit of the random-effects model (3) (using PROC NLMIXED
in SAS) provides [a 5 .164 and [s 5 .29. For that model, the predicted
random-effects values (also estimated using NLMIXED) yield the corre-
sponding proportion estimates$ [pi

~1! 5 exp~ [a 1 [ui !0@1 1 exp~ [a 1 [ui !#%
(also shown in Table 2). Since the sample sizes are mostly small and
since [s is relatively small, the amount of shrinkage for these estimates
is considerable. They vary between only .468 (Texas) and .696 (NewYork),
whereas the sample proportions vary between .111 (for Idaho) and 1.0
(DC). Estimates based on fewer observations, such as DC, tend to
receive greater shrinkage. Although the random-effects estimates are
relatively homogeneous, they do tend to be closer than the sample pro-
portions to the true values. For instance,(6pi 2 pi 6051 5 .079 and

(6 [pi
~1! 2 pi 60515 .053.

To check whether these results are typical, we simulated 10,000
studies with these sample sizes and probabilities. Overall, the mean dis-
tance from true probabilities was .060 for the random-effects estimates
and .091 for the sample proportions. In 99.6 percent of the studies, the
mean distance was smaller for the random-effects estimates.

Although the random-effects estimates tend to be closer than the
sample proportions to the true proportions, the amount of shrinkage can be
excessive, given other information we know about presidential elections.
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TABLE 2
Estimates of Proportion of Vote for Clinton, Conditional on Voting for Clinton or Dole in 1996 U.S. Presidential Election

State ni pi pi [pi
~1! [pi

~2! State ni pi pi [pi
~1! [pi

~2!

AK 5 0.394 0.200 0.508 0.438 MT 7 0.483 0.429 0.526 0.528
AL 32 0.463 0.500 0.524 0.484 NC 55 0.475 0.455 0.494 0.492
AR 19 0.594 0.526 0.537 0.604 ND 5 0.461 0.600 0.546 0.444
AZ 34 0.512 0.618 0.573 0.531 NE 13 0.395 0.462 0.524 0.408
CA 240 0.572 0.538 0.538 0.557 NH 9 0.567 0.556 0.543 0.527
CO 29 0.492 0.586 0.558 0.553 NJ 60 0.600 0.667 0.611 0.579
CT 25 0.604 0.720 0.602 0.588 NM 13 0.540 0.462 0.524 0.556
DC 4 0.903 1.000 0.576 0.909 NV 12 0.506 0.500 0.533 0.530
DE 5 0.586 0.400 0.527 0.561 NY 137 0.660 0.752 0.696 0.686
FL 108 0.532 0.602 0.583 0.553 OH 84 0.536 0.488 0.507 0.510
GA 56 0.494 0.554 0.548 0.531 OK 23 0.456 0.478 0.520 0.463
HI 9 0.643 0.556 0.543 0.580 OR 24 0.547 0.625 0.569 0.589
IA 22 0.557 0.500 0.528 0.544 PA 90 0.552 0.567 0.558 0.569
ID 9 0.391 0.111 0.472 0.395 RI 7 0.689 0.571 0.545 0.629
IL 89 0.596 0.539 0.540 0.574 SC 28 0.469 0.571 0.552 0.491
IN 44 0.468 0.432 0.488 0.464 SD 6 0.479 0.667 0.555 0.502
KS 19 0.400 0.316 0.477 0.455 TN 40 0.513 0.500 0.522 0.531
KY 29 0.506 0.448 0.506 0.516 TX 144 0.473 0.444 0.468 0.465
LA 33 0.566 0.667 0.592 0.571 UT 15 0.380 0.333 0.490 0.372
MA 46 0.686 0.739 0.637 0.665 VA 51 0.489 0.412 0.473 0.465
MD 38 0.586 0.474 0.511 0.566 VT 4 0.633 0.500 0.538 0.615
ME 9 0.627 0.778 0.578 0.591 WA 42 0.572 0.619 0.578 0.599
MI 73 0.573 0.589 0.570 0.573 WI 39 0.559 0.487 0.517 0.529
MN 35 0.594 0.571 0.554 0.588 WV 14 0.584 0.571 0.548 0.591
MO 41 0.535 0.561 0.550 0.575 WY 4 0.426 0.250 0.518 0.470
MS 21 0.472 0.333 0.477 0.445

Note:pi 5 true,pi 5 sample, [pi
~1! 5 random effects, [pi

~2! 5 random effects with shrinkage toward 1992 election.
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For instance, in 16.1 percent of the simulations[s was so small that these
estimates predicted a Clinton victory in every state. Rather than assuming
a common mean for the random effects, one might instead use supplemen-
tary information that should improve the predictions. For instance, letqi

denote the true proportion of votes for Clinton in statei in the 1992 elec-
tion, conditional on voting for Clinton or Bush. This is known information
for polls taken in 1996, and one could fit the model

logit~pi ! 5 logit~qi ! 1 a 1 ui ,

where$qi % are known and$ui % are independent from aN~0,s2! distribu-
tion. Known terms in the linear predictor, such as logit~qi !, are referred to
asoffsets. Rearranging the previous equation we obtain

log
pi 0~12 pi !

qi 0~12 qi !
5 a 1 ui + (4)

Thus,a 1 ui represents the log-odds ratio for thei th state of voting for
Clinton versus Dole in 1996 relative to voting for Clinton versus Bush in
1992.

Table 2 also shows the resulting estimates$ [pi
~2! % of $pi % . Here,

[s 5 .19 and the estimates shrink considerably toward the prior values
from 1992, with a slight upward adjustment since[a 5 +205. For model
(4), when [s 5 0, [pi

~2! 5 qi exp~ [a!0@1 2 qi 1 qi exp~ [a!# , and when also
[a 5 0, [pi

~2! 5 qi . Otherwise when [s 5 0, compared to the previous
election results, the estimates shift up or down on the logit scale depend-
ing on how the overall Democratic vote compares in the current poll to
the previous election (i.e., depending on[a!.

With model (4), the random effects estimates vary between .372
(for Utah) and .909 (for DC), whereas the true values vary between .380
(for Utah) and .903 (for DC). Now, these random-effect estimates tend
to be much closer than the sample proportions to the true values, with,

(6pi 2 pi 6051 5 .079 and(6 [pi
~2! 2 pi 6051 5 .024. Over 10,000 simu-

lations, the mean distance values were .091 and .027, and the mean dis-
tance was smaller for the random-effects estimates in 100 percent of the
cases. In 27.5 percent of these cases[s 5 0, but in none of them did the
random-effects estimates predict a Clinton victory in each state. Figure 1
displays the values of~pi , [pi ,qi , [pi

~2! ! for the data in Table 2, with the
states ordered by their values of$pi % .
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3+2+ Example 2: Modeling Repeated Binary Measurement

Section 2.1 introduced a random-effects model for repeated categorical
measurement with the simple case of binary matched pairs. The model
then has the form

FIGURE 1. Estimates of statewide proportions planning to vote for Clinton in 1996
presidential election (conditional on voting for Clinton or Dole), based on
random sample of 2000 voters.
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logit@P~ yi1 5 1!# 5 a 1 ui , logit@P~ yi 2 5 1!# 5 a 1 b 1 ui ,

where$ui % are an independent sample from aN~0,s2! distribution. Letnab

denote the number of observations for which~ yi1, yi2! 5 ~a,b!, a 5 0,1,
b 5 0,1. The counts can be summarized in a table such as Table 1. Let
Y1 5 (yi1 andY2 5 (yi 2. Unconditionally,Y1 is a binomial random vari-
able with parameterE$exp~a1u!0@11exp~a1u!#% , andY2 is a binomial
random variable with parameterE$exp~a 1 b 1 u!0@1 1 exp~a 1 b 1
u!#% , where the expectation is taken with respect tou, aN~0,s2! random
variable.

This model implies a nonnegative correlation between the binomial
variatesY1 andY2, with greater association resulting from greater hetero-
geneity (i.e., largers). Under this model,Y1 andY2 are independent only if
s 5 0. When the sample data are consistent with this model, in the sense
that log~n00n110n10n01! $ 0, then the perhaps surprising result (Neuhaus
et al. 1994) occurs thatZb 5 log~n010n10!. This is also the estimate with the
conditional ML approach, eliminating$ui % by conditioning on their suffi-
cient statistics.

This random-intercept model extends to more than two repeated
measurements, with covariates that themselves may or may not vary. We
illustrate using Table 3, which contains data from the 1994 General Social
Survey. The subjects indicate whether they support legalizing abortion in
three situations: (1) if the family has a very low income and cannot afford
any more children, (2) when the woman is not married and does not want
to marry the father, and (3) if the woman wants to terminate the pregnancy

TABLE 3
Cross Classification of Support for Legalizing Abortion in Three Cases, by Gender

Sequence of Responses on the Three Items*

Gender (1,1,1)† (1,1,2) (2,1,1) (2,1,2) (1,2,1) (1,2,2) (2,2,1) (2,2,2)

Male 342 26 6 21 11 32 19 356
Female 440 25 14 18 14 47 22 457

Source:Data fromGeneral Social Survey(1994).
*Respondents were asked about their support for legalizing abortion (1) if the family has

a very low income and cannot afford any more children, (2) if the woman is not married and does
not want to marry the father, and (3) if the woman wants to terminate the pregnancy for any reason.

†Response 1 is “yes” and 2 is “no.”
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for any reason. Table 3 also classifies the subjects by gender. Letyij denote
the response for subjecti on itemj, with a value of 1 representing support.
We consider the model

logit@P~ yij 5 1!# 5 a 1 bj 1 gx 1 ui , (5)

wherex 5 1 for females and 0 for males,$ui % are independent from a
N~0,s2! distribution, and$bj % satisfy a constraint such asb35 0. (Equiv-
alently, one could deletea from the model and then remove the constraint
on $bj % or allow a nonzero mean for$ui % .)

For the ML fit of this model, contrasts of$ Zbj % provide evidence
of greater support for legalized abortion when the family has a low
income and cannot afford any more children than in the other two in-
stances~ Zb1 2 Zb3 5 +83, se5 +16, Zb1 2 Zb2 5 +54, se5 +16! and slight
evidence of greater support when the woman is not married and does
not want to marry the man than when the woman wants the abortion
for any reason~ Zb2 2 Zb3 5 +29, se5 +16!. Also, [g 5 +01 ~se5 +49!. The
estimates have log-odds ratio interpretations. For each item, for instance,
the estimated odds of females supporting legalized abortion equal
exp(.01)5 1.01 times the estimated odds for males. For these data, sub-
jects are highly heterogeneous~ [s 5 8.8, withse5 +54!, resulting in strong
associations among the items as reflected by 1595 of the 1850 observa-
tions falling in the four cells where subjects made the same response on all
three items. We also considered the interaction model having different
$bj % for men and women, but it did not provide an improved fit (likelihood-
ratio statistic5 1.0 withdf 5 2 for testing that the extra parameters equal
0). Essentially, there is no difference between males and females in this
study.

3+3+ Example 3: Summarizing Results from Several 2-by-2 Tables

Many applications refer to comparing two groups on a binary response
when data are stratified according to levels of a third variable. The data
then take the form of several 2-by-2 contingency tables. The strata are
sometimes themselves a sample—for example, schools or medical cen-
ters; or they may be levels of a control variable, such as age or severity of
the condition being treated, or combinations of levels of several control
variables; or, they may be different studies of the same sort evaluated in a
meta-analysis. The main concerns for data of this sort relate to investigat-
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ing the “average” level of association and the degree of variability about
that average (i.e., the treatment-by-center interaction); for instance, see
DerSimonian and Laird (1986).

When the strata are sampled, a random-effects approach is natural.
One then has a structure for extending inferences to the population of
strata sampled. Moreover, the random-effects model can provide a simple
summary such as an estimated mean and standard deviation of log-odds
ratios for the population of centers. It can also provide predicted odds
ratios for separate strata that have the benefits of shrinkage, especially
when sample sizes in some of the strata are small. Even when the strata are
not a sample, the model can be beneficial for these two purposes.

We illustrate using Table 4, which shows the results of admissions
decisions for applicants to graduate school in departments of the College
of Liberal Arts and Sciences at the University of Florida during the 1997–
1998 academic year. Stratifying by the department to which the student
applied, the table compares males and females on whether admitted. Over-
all 983 men applied with 35.9 percent accepted, and 1093 females applied
with 34.4 percent accepted.

For a subject of genderj ~ j 51, males,j 5 2, females) applying to
departmenti , letpij denote the probability of being admitted. One possible
model is the logit-normal model

logit~pi1! 5 a 1 b02 1 ui , logit~pi 2! 5 a 2 b02 1 ui , (6)

assuming that$ui % are independent from aN~0,s2! distribution. This model
assumes that the log-odds ratiob between gender and being admitted is
constant over departments. A logit-normal model permitting interaction is

logit~pi1! 5 a 1 bi 02 1 ui , logit~pi 2! 5 a 2 bi 02 1 ui , (7)

where$ui % are independent from aN~0,su
2! distribution,$bi % are indepen-

dent from aN~b,sb
2! distribution, b is the expected value of study-

specific log-odds ratios andsb describes the variability in those log-odds
ratios. The model parameters are then~a,b,su,sb!.

For these data, a standard fixed-effects analysis for the lack of
interaction model has ML estimate of the gender effectZb 5 2+173
~se5 +112!. The corresponding model (6) in which departments are a
random effect also hasZb 5 2+163~se5 +111!. The model (7) permitting
interaction but assuming that$ui % are independent of$bi % has Zb 5 2+18
~se5 +13!, with [sb 5 +20 ~se5 +35!. Similar answers result from allowing
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TABLE 4
1997–1998 Admissions Decisions to Graduate School at the University of Florida

Males Females Males Females

Department Yes* No Yes No OR** Department Yes* No Yes No OR**

Anthropology 21 41 32 81 1.30 Linguistics 7 8 21 10 .42
Astronomy 3 8 6 0 0 Mathematics 31 37 25 18 0.60
Chemistry 34 110 12 43 1.11 Philosophy 9 6 3 0 0
Classics 4 0 3 1 ` Physics 25 53 10 11 .52
Communicative Processes 5 10 52 149 1.43 Political Science 39 49 25 34 1.08
Computer Science 6 12 8 7 .44 Psychology 4 41 2 123 6.00
English 30 112 35 100 .77 Religion 0 2 3 3 0
Geography 11 11 9 1 .11 Romance Languages 6 3 29 13 .90
Geology 15 6 6 3 1.25 Sociology 7 17 16 33 .85
Germanic0Slavic 4 1 17 0 0 Statistics 36 14 23 9 1.01
History 21 19 9 9 1.11 Zoology 10 54 4 62 2.87
Latin American Studies 25 16 26 7 0.42

*Yes 5 accept, no5 reject; **OR5 sample odds ratios.
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$ui % and$bi % to be correlated. For all these models the estimated gender
effect is not large. For instance, for the interaction model the estimated
mean log-odds ratio of2 +176 corresponds to an odds ratio of .84. The
gender effect is not significant. For instance, the likelihood-ratio statistic
for testingH0 : b 5 0 is 2.4 (df51) for the fixed-effects model and 2.0 for
the random-effects model allowing interaction. Note that because of the
extra source of variability in the interaction models, the standard error ofZb
is slightly larger than with the other analyses.

As in Example 1, one can obtain smoothed estimates, this time of
the department-specific odds ratios. Table 4 shows that the sample odds
ratios varied between 0 (for Astronomy, Germanic and Slavic Languages,
Philosophy, Religion) and̀ (Classics); by contrast, the estimates of
exp~bi ! for model (7) vary between .75 (for Astronomy) and .96 (for Zo-
ology). There is not much variability in these predictions, since the esti-
mated variance component for the interaction is so small. Interestingly,
Simpson’s paradox occurs here, as the marginal sample odds ratio relating
gender to whether admitted equals 1.07, whereas the predicted odds ratio
for every department is less than 1.0.

Incidentally, in passing we mention that one needs to be careful
about implications of the model formula expression and the random-
effects structure. For instance, model (7) with uncorrelated$bi % and$ui % is
different from the model

logit~pi1! 5 a 1 bi 1 ui , logit~pi 2! 5 a 1 ui ,

with uncorrelated$bi % and $ui % . Generally, if the interaction model has
form logit~pij ! 5 a 1 bi xj 1 ui wherexj is a dummy variable (with, e.g.,
x1 2 x2 51!, and if we letzj 5 xj 1 c for some constantc, then the model
is also logit~pij !5a1bi ~zj 2c!1ui 5a1bi zj 1vi , wherevi 5ui 2cbi .
Thus~bi , vi ! are correlated even if~bi ,ui ! are not.

3+4+ Example 4: Hierarchical Modeling

Hierarchical data, in which units are grouped at different levels, is com-
mon in the social sciences. Models for data in which hierarchical grouping
or clustering occurs are often referred to asmultilevel models. These mod-
els fall within the GLMM framework that is the focus of this paper. For
example, in a study of factors that affect school performance, the level 1
units might be students, the level 2 units schools, and the level 3 units the
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county, region, or school district. Clearly, socioeconomic factors that af-
fect school choice will often cause students within the same schools to
have correlated responses. Similarly, variation between locations may in-
duce additional correlation at a regional level. Correlations caused by ad-
ditional sources of variability are accounted for in a multilevel model
through the inclusion of random effects at each stage of the hierarchy. The
variances of these effects are estimated as part of the model-fitting pro-
cess, and they measure the amount of variability not explained by fixed
effects at each level. For early descriptions of the use of random-effects
modeling with binary responses in the context of educational assessment,
see Aitkin, Anderson, and Hinde (1981) and Aitkin and Longford (1986).
For a recent application of multilevel modeling to social observation of
neighborhoods, see Raudenbush and Sampson (1999). Other general ref-
erences include Bryk and Raudenbush (1992), Goldstein (1995), Plewis
(1997), and Muthen (1997).

Goldstein (1995, sec. 7.3) provided an example from a survey of
voting behavior in the United Kingdom with a similar multilevel structure.
The data in this case were obtained from a series of surveys carried out in
Britain following elections held in 1983, 1987, and 1992. Respondents
were grouped according to year and by the parliamentary constituency in
which they lived at the time.Abinary response variable of interest is whether
or not an individual voted for the Conservative party as opposed to the
Liberal or Labour parties. Some constituencies were sampled in all three
years and others in only one or two years, resulting in a multilevel struc-
ture with respondent at level 1 and year by constituency combinations at
level 2. Letpijk denote the probability that respondentk in year j from
constituencyi says that he or she voted for the Conservatives. Then a
potential GLMM for this data is

logit~pijk ! 5 x ijk
t b 1 uij , (8)

where x ijk
t b models fixed effects such as socioeconomic status and

~ui1,ui2,ui3! is a trivariate normal random variable representing the ef-
fects of constituencyi in the three election years. If we assume that between-
constituency variation is the same in each year and that the correlations
between pairs of years are all equal, then (8) is equivalent to the model:

hijk [ logit~pijk ! 5 x ijk
t b 1 uij 1 vi , (9)

where nowui1,ui2,ui3 andvi are independent normal variables, withuij ;
N~0,su

2! andvi ; N~0,sv2!+ This model formally has a three-level struc-
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ture. Level 1 variation between respondents in the same year and constit-
uency (and the same fixed factors) is Bernoulli. This is combined with a
normal random effect~uij ! which accounts for year-to-year (level 2) vari-
ation in log-odds ratios for respondents in the same constituency. Finally,
level 3 variation between respondents in different constituencies is a com-
bination of Bernoulli and two independent normal random effects~uij and
vi !. Contrasting models (8) and (9) illustrates an important point about
multilevel modeling. Incorporating an additional level of hierarchy in (9)
led to a more parsimonious model requiring only two parameters~su and
sv ! to describe the random-effects distribution compared with six in the
two-level model (8).

In the survey of voting behavior data, Goldstein obtained the esti-
matessu

2 5 0+05 andsv
2 5 0+38. This implies a correlation between the

log-odds of a respondent saying they voted Conservative in two different
election years of

cor~hijk ,hij 'k! 5
su

2

su
2 1 sv

2 5
0+05

0+051 0+38
5 0+12+

An interesting feature of the model is that this correlation is the same for
two different subjects—i.e., cor~hijk ,hij 'k! 5 cor~hijk ,hij 'k ' !+ In fact an
unattractive property of the model is that equality also holds for the cor-
relation between the corresponding pairs of binary responses:

cor~Yijk ,Yij 'k! 5 cor~Yijk ,Yij 'k ' ! +

Intuitively, one would expect a higher correlation between responses on
the same subject. In principle this “deficiency” could be overcome by add-
ing an additional random effect for each respondent. However, the amount
of information for estimating the additional variance component is limited
in this example, since there are a maximum of three repeated measure-
ments on each respondent. In addition, Goldstein found little evidence of
lack of fit for the simpler model.

3+5+ Example 5: Nonparametric Random-Effects Approach

The examples discussed so far have assumed a normal distribution for
random-effects distributions.An alternative, nonparametric, random-effects
approach uses instead a distribution on a finite set of mass points having
location that is estimated empirically (Heckman and Singer 1984; Lind-
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say, Clogg, and Grego 1991; Aitkin 1996, 1999). With latent-class models,
one specifies the number of mass points for this mixture distribution. The
general approach does not specify the number of mass points, but one
treats it as fixed and sequentially increases the sample value until the like-
lihood is maximized. In fact, maximizing the likelihood usually requires
relatively few mass points. Aitkin (1996, 1999) presented examples of the
general nonparametric approach. Heckman and Singer (1984) noted that
this approach is primarily useful when the mixing distribution is a nui-
sance parameter rather than of direct interest, since the nonparametric es-
timate of that distribution may be poor even for large samples.

Follmann and Lambert (1989) provided an interesting example in
which the number of mass points was prespecified. They analyzed data
on the effect of the dosage of a poison on the death rate of a protozoan
of a particular genus, assuming two varieties of that genus. For their
model, the probability of death at a particular dosage levelxequalsrp1~x!1
~12 r!p2~x!, where logit@pi ~x!# 5 ai 1 bx and the mixing proportionr
is unknown. The fit of this model was much better than that of a single
logistic regression model.

In a similar spirit, Lindsay et al. (1991) studied models of the Rasch
form (1) but in which the subject term can assume only an unknown finite
number of values. They showed that withk items, the likelihood is maxi-
mized when the subject parameter takes at most~k11!02 values. In related
work, Tjur (1982) showed that with a distribution-free approach for the
subject term, the fit of the Rasch model satisfies the quasi-symmetry log-
linear model; see Conaway (1989), Darroch (1981), Hatzinger (1989),
Kelderman (1984), and Agresti (1993, 1995, 1997) for related work and
details.

We illustrate the nonparametric approach by fitting model (5) to
the attitudes about abortion data in Table 3, now using a finite mixture
distribution rather than a normal distribution for the random effectui . The
likelihood is then maximized with a two-point mixture. The results are
very similar to those obtained with the normal mixture model. For in-
stance, with the nonparametric approachZb1 2 Zb3 5 +833 ~se5 +16! and
Zb22 Zb35 +304~se5 +16!, compared to Zb12 Zb35 +834~se5 +16! and Zb22
Zb3 5 +292~se5 +16! with the normal approach.

It follows from the papers cited above that one can also estimate the
within-subject comparisons of itemsbh2bj in model (5) by fitting a quasi-
symmetric log-linear model. Letmg~h1, h2, h3! denote the expected fre-
quency for gendergmaking responsehj to itemj, j 51,2,3, whereg51 for
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female and 0 otherwise and wherehj 51 for approval of legalized abortion
for item j and 0 otherwise. This model is

log mg~h1, h2, h3! 5 b1 I ~h1 5 1! 1 b2 I ~h2 5 1! 1 b3 I ~h3 5 1!

1 tI ~g 5 1! 1 (
k50

3

lk I ~h1 1 h2 1 h3 5 k!, (10)

whereI ~{! is the indicator function. Here,lk is a parameter referring to all
cells in which subjects voiced approval ink of the three items,k5 0, 1, 2,
3. Fitting this model with ordinary software for GLMs (such as PROC
GENMOD in SAS), we obtainZb12 Zb25 .521~se5 +154!, Zb12 Zb35 .828
~se5 +160!, Zb2 2 Zb3 5 .307~se5 +161!, very similar to the normal ran-
dom effects and nonparametric random-effects estimates. In fact, it
follows from Tjur (1982) that these estimates also equal those obtained
using conditional ML with model (5), treating the subject terms as fixed.
With this approach (and with conditional ML), however, one cannot esti-
mate between-groups effects, such as the gender effect in model (5).

3+6+ Example 6: Matched Pairs with a Bivariate Binary Response

Examples discussed so far have had univariate random effects or indepen-
dent random effects. We next show an example in which a multivariate,
correlated random-effects structure is natural. We use Table 5, taken from
Coleman (1964) and analyzed in several papers by Leo Goodman—e.g.,
Goodman (1974). A sample of schoolboys were interviewed twice, several
months apart, and asked about their self-perceived membership in the “lead-
ing crowd” and about whether one must sometimes go against their prin-
ciples to be part of that leading crowd. Thus there are two variables, which
we refer to as membership (M) and attitude (A), measured at each of two
interview times for each subject. Table 5 labels the categories for attitude
as positive and negative, where positive refers to disagreeing with the state-
ment that students must go against their principles.

For subjecti , letpijv be the probability of response in category 1 for
variablev at interview timej. We consider the multivariate logit model

logit~pijv ! 5 bjv1 uiv, (11)

in which ~ui1,ui2! describes subject heterogeneity for membership and
attitude andb2v2 b1v describes the change in the response distribution for
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TABLE 5
Cross Classification Illustrating Matched Pairs with a Bivariate Binary Response

(M, A) for second interview
(M, A)* for
first interview (Yes, Positive) (Yes, Negative) (No, Positive) (No, Negative) Total

Yes Positive 458 140 110 49 757
(451.3) (145.5) (121.9) (48.8)

Yes Negative 171 182 56 87 496
(173.5) (180.5) (58.2) (73.4)

No Positive 184 75 531 281 1071
(178.0) (71.3) (531.9) (279.4)

No Negative 85 97 338 554 1074
(85.0) (107.2) (333.2) (558.8)

Total 898 494 1035 971 3398

Source:From Coleman (1964).
*Membership (M) and attitude (A) toward the “leading crowd”; fitted values for model (11) are in parentheses.
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variablev between interview times 2 and 1; that is, there are two nonde-
generate random effects, one for attitude and one for membership. We
fitted this model assuming that$~ui1,ui2!% are a random sample from a
bivariate normal distribution.

Let M denote the membership variable andA the attitude variable.
The ML fit of the bivariate random-effects model yieldsZb2M 2 Zb1M 5 +366
(std. error5 .073) and Zb2A 2 Zb1A 5 +176 (std. error5 .058). For both
variables, the probability of the first response is higher at the second in-
terview; for instance, for each subject the odds of self-perceived member-
ship in the leading crowd at time 2 are estimated to be exp(.366)5 1.44
times the odds at time 1. The values in the estimated covariance matrix
(not reported here) suggest that there is more heterogeneity with respect to
membership than with respect to attitude, and the estimated correlation
between the random effects is 0.33. The model fits well, with likelihood-
ratio statistic (deviance) comparing the observed counts to the fitted val-
ues equal toG2 55+5, based ondf 58. The likelihood-ratio test comparing
this model to the one that constrainsb2M 2 b1M 5 0 andb2A2 b1A5 0 has
test statistic 35.2 based ondf 5 2. The model constraining the random
effects to be uncorrelated also fits poorly~G2 5 97+5, df 5 9!, as does the
model with perfectly correlated random effects~G2 5 655+5, df 5 10!.

For this model, Agresti (1997) used a nonparametric approach,
whereby a lack of assumption about the distribution of~ui1,ui2! moti-
vates a quasi-symmetric log-linear model. This yields the same esti-
mates as obtained with a conditional ML (CML) approach that eliminates
~ui1,ui2! by conditioning on their sufficient statistics. The results re-
ported here are nearly identical to those obtained using that approach
(see Agresti 1997, but the attitude labels and the sign of the estimates
are incorrectly stated there). There are a few basic differences, however.
For instance, the nonparametric0CML approach necessarily provides es-
timates ofb2M 2 b1M andb2A 2 b1A that are identical to the CML esti-
mates from two separate univariate analyses. In essence, because that
approach makes no assumption about the joint distribution of the ran-
dom effects, the multivariate form of the data does not affect the analy-
sis. This does not happen for the bivariate normal random effects analysis,
although the estimates are very close to those obtained with univariate
analyses.

The approach described above with correlated normal random ef-
fects is a continuous analog to discrete latent-class models proposed by
Goodman (1974), based on two associated binary latent variables. Results

52 AGRESTI, BOOTH, HOBERT, AND CAFFO



are similar for the two approaches, although advantages of the random-
effects model are that it is more parsimonious and it directly provides
estimatesb2M 2 b1M andb2A 2 b1A that compare the margins of the ob-
served classifications. For additional examples of multivariate random ef-
fects analyses, see Coull and Agresti (2000).

3+7+ Example 7: Extensions to Ordinal/Nominal Response Data

Random-effects models for binary data extend to handle multinomial re-
sponses, whether measured on ordinal or nominal scales. For instance, let
yij denote thej th response in clusteri , where the possible values foryij are
the response category outcomes 1,2, . . . ,K. For ordinal responses, GLMMs
have been formulated for theK 2 1 cumulative logits,

logit@P~ yij # k!# 5 ak 1 x ij
t b 1 zij

t u i , k 5 1, + + + ,K 2 1, (12)

(e.g., see Ezzet and Whitehead 1991; Hedeker and Gibbons 1994; Tutz and
Hennevogl 1996). This model has the simpleproportional oddsform
whereby fixed and random effects are the same for all cumulative proba-
bilities, that is for all ways of collapsing theK categories to a binary
response.

For nominal response variables, cumulative probabilities are not
meaningful. One can then formulate an ordinary binary model by pairing
each category with a baseline (e.g., categoryK ! and fit theseK 21 models
simultaneously while allowing separate effects for each. This necessitates
using a vector of random effects, one for each logit. This case has received
little attention in the literature.

To illustrate a model of form (12), we analyze data from the 1994
General Social Survey on subjects’ opinions on four items (the environ-
ment, health, law enforcement, education) relating to whether they believe
that government spending on each item should increase, stay the same, or
decrease. Subjects are also classified by their gender and their race. (The
contingency table has 486 cells and is not shown here.) For subjecti , let
Gi 51 for females and 0 for males, letR1i 51 for whites and 0 otherwise,
R2i 51 for blacks and 0 otherwise. Letyij denote the response for subject
i on spending itemj, where outcomes (1, 2, 3) represent (increase, stay the
same, decrease). Consider first the random-intercept model

logit@P~ yij # k!# 5 ak 1 bj 1 bgGi 1 br1 Ri1 1 br 2 R2i 1 ui ,

k 5 1, + + + ,K 2 1+ (13)
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Using NLMIXED in SAS with constraintb4 5 0, we obtained ML esti-
mates (2.551,2.603,2.486, 0) of the item parameters$bj % . The first
three estimates have absolute values greater than five standard errors, pro-
viding strong evidence of greater support for increased government spend-
ing on education than on the other items.

However, substantial evidence of interaction exists. For instance,
the deviance drops by 33.4 with the addition of a race-by-item interaction
term. For that model, Table 6 shows the ML estimates and standard errors.
Each race shows relatively more support for spending on education than
the other items, with blacks also giving relatively high support for spend-
ing on health. To help show how to interpret these estimates, Table 7 shows
the linear predictor estimates for males for the logit of the probability of
supporting increased spending (category 1 contrasted with the other two).
For instance, for white subjects with the environment item, the estimated
linear predictor equals 1.0652 .0552 .3572 .1705 .483, so for a white
male at the mean of the random-effects distribution, the estimated proba-
bility of supporting increased spending ise+4830@1 1 e+483# 5 +62. The

TABLE 6
Parameter Estimates and Standard Errors for Cumulative
Logit Model on Government Spending, with Random Sub-

ject Intercept, Permitting Item-by-Race Interaction

Variable Estimate Standard Error

Intercept-1 1.065 .391
Intercept-2 1.919 .051
Gender .409 .088
Race1-w 2.055 .397
Race2-b .434 .452
Item1-envir 2.357 .539
Item2-health 2.319 .493
Item3-crime 2.585 .480
Race1pItem1 2.170 .549
Race1pItem2 2.387 .503
Race1pItem3 .197 .491
Race2pItem1 2.452 .606
Race2pItem2 .454 .598
Race2pItem3 2.518 .560

Source: General Social Survey(1994).
Note:Coding 0 for Item 4 (educ.) and race 3 (other).
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linear predictor values increase by 1.919 for the cumulative probability for
the second category—that is, the probability of response in categories “in-
creasing” or “staying the same.” For this model,Zbg5 .409; for females, the
(subject-specific) odds of supporting increased spending instead of the
same or lower spending, and the odds of supporting increased or the same
spending instead of lower spending, are estimated to be exp(.409)51.51
times the corresponding odds for males.

Some evidence exists of additional interactions, but the race-by-
item interaction provides the strongest departure from the main effects
model. For this model, the estimated standard deviation of the random
intercept equals 1.0, representing a considerable positive association among
repeated responses by each subject.

3+8+ Example 8: Cluster Sampling

The use of cluster sampling methods has traditionally presented a stum-
bling block for categorical data methodology. Although numerous meth-
ods have been proposed, few are reported in the social science literature or
have been adopted by leading software packages. Standard errors based on
simple random sampling are too small, and the usual chi-squared test sta-
tistics have weighted sums of chi-squared, not chi-squared null distribu-
tions. For instance, see Rao and Thomas (1988) for a survey of ways of
adjusting standard inferences to take into account complex sampling meth-
ods in the analysis and modeling of categorical data.

TABLE 7
Linear Predictor Estimates for Logit Probability of

Males Preferring Increased Spending*

Race

Item White Black Other

Environment .48 .69 .71
Health .30 1.64 .74
Crime .62 .40 .48
Education 1.01 1.50 1.06

*For model with item-by-race interaction with government
spending data (Table 6); this increases by .41 for females and by 1.92
for logit probability of increased or the same spending.
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When the sampling scheme uses a random sample of clusters, with
independent observations within each cluster, one can account for the clus-
tering by using random effects for the clusters. To illustrate, we analyze
data from Brier (1980), who reported 96 observations taken from 20 neigh-
borhoods (the clusters) onY5 satisfaction with homeandX5 satisfaction
with neighborhood as a whole. Each variable was measured with the or-
dinal scale (unsatisfied, satisfied, very satisfied). Brier’s (1980) analysis
adjusted for the clustering by reducing the usual Pearson statistic for test-
ing independence in the 333 contingency table relatingXandYfrom 17.9
to 15.7~df 5 4).

Again, letyij denote thej th response in clusteri , and consider the
model

logit@P~ yij # k!# 5 ak 1 xij b 1 ui , (14)

where we use scores (1, 2, 3) for the satisfaction levels ofxij . Assuming
a N~0,s2! distribution forui and using NLMIXED in SAS, we obtained
Zb 5 21+201, with standard error of .407, and[s 5 .92 ~se5 +37!. By

contrast, the analysis treating the 96 observations as a random sample cor-
responds to this model forcings 5 0; it has Zb 5 21+226, with standard
error of .370. As in the Brier (1980) analysis, there is a slight reduction in
significance from taking the clustering into account. The ratio of Var~ Zb! in
the clustered to unclustered analysis is 1.14, as is the ratio of Brier’s Pear-
son statistics in the unclustered to clustered analyses. It is a bit surprising
that the cluster-specificZb estimate is not larger (in absolute value) than the
unclustered one. A referee has indicated that this may reflect the fact that
asymptotics may not apply well with a relatively small number of clusters
(20 in this case) or that the cluster factor is confounded with the satisfac-
tion with neighborhood covariate (Neuhaus and Kalbfleisch 1998; Berlin
et al. 1999).

3+9+ Example 9: Capture-Recapture Data

This section has presented a variety of data sets and applications to illus-
trate the potential use of random-effects modeling with categorical re-
sponse data in the social sciences. Some alternative forms of such models
that have been used in other scientific disciplines also have the potential
for social science applications.
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An example is random-effects models as employed in capture-
recapture problems. These methods have repeated measurement over time,
with scale (sampled, not sampled) at each time. Observations are com-
pletely missing for the cell corresponding to those subjects not sampled for
every list. Such methods have traditionally been used to estimate animal
abundance in some habitat. However, they have increasingly been applied
to estimate population size in census and public health settings. For in-
stance, Davies, Cormack, and Richardson (1999) estimated population prev-
alence of injecting drug use and HIV infection in Glasgow, and Darroch
et al. (1993) used a three-sample multiple-recapture approach in census
population estimation.Another possible application is to estimate the num-
ber of files on the World Wide Web relating to some subject by taking
samples using several search engines (Fienberg, Johnson, and Junker 1999).

For capture-recapture modeling, Coull and Agresti (1999) recently
used a logit model with a random-effects term to represent heterogeneity
among subjects in their probability of capture at any given time. This al-
lowance for heterogeneity results in wider prediction intervals for the pop-
ulation size than ordinary methods provide, indicating that intervals based
on a possibly unrealistic assumption of homogeneity among subjects may
be overly optimistic.

3+10+ Extensions to Discrete Data

The focus of this paper is on random-effects models for categorical re-
sponse data. More generally, GLMMs are useful for other types of discrete
data as well. For instance, consider Poisson regression modeling of count
data. A severe limitation of the Poisson model is that the variance must be
identical to the mean; hence, at a fixed mean there is not the potential for
the variance to decrease as predictors are added to the model. In particular,
count data often show overdispersion, with the variance exceeding the
mean.

A flexible way to account for overdispersion with count data is with
a mixture model. Traditionally this is done by assuming that, given the
mean, the distribution is Poisson, but the mean itself varies according to a
gamma distribution. The mixture distribution is then the negative bi-
nomial. There are two versions of the negative binomial model, depending
on how the gamma is parameterized; one version has variance that is a
constant multiple of the mean, and the other has variance that is a quadratic
function of the mean (McCullagh and Nelder 1989). ML estimation for the
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latter case is available with PROC GENMOD in SAS (starting with Ver-
sion 7).

Alternatively, one can use the GLMM structure (2), typically with
the log-link function and a normal random effect. For the log link with
random intercept, for instance, the model for the meanm ij for the j th re-
sponse in clusteri is

log~m ij ! 5 x ij
t b 1 ui ,

whereui has aN~0,s2! distribution. This model is an appealing way to
account for overdispersion due to important unobserved explanatory vari-
ables. The implication about the marginal distribution (averaging out the
random effect) is that

E~ yij ! 5 E @E~ yij 6ui !# 5 E @ex ij
t b1ui # 5 ex ij

t b1s 202

since (by its moment-generating function) aN~0,s2! variate ui has
E~etui ! 5 et 2s 202+ That is, if this model holds, then the log of the mean
unconditionally equalsxij

t b 1 s202, so the cluster-specific effects of the
explanatory variables are the same as the marginal effects but the intercept
is offset (Zeger et al. 1988). Similarly, the marginal distribution has

Var~ yij ! 5 E @Var~ yij 6ui !# 1 Var@E~ yij 6ui !#

5 E @ex ij
t b1ui # 1 e2x ij

t bVar~eui !

5 ex ij
t b1s 202 1 e2x ij

t b~e2s 2
2 es 2

!

5 E~ yij ! 1 @E~ yij !#
2~es 2

2 1!+

That is, the unconditional variance is a quadratic function of the mean. The
ordinary Poisson model results froms2 5 0, and the extent to which the
variance exceeds the mean increases ass2 increases.

Note that one can obtain the negative binomial model with log link
from a GLMM construction by letting exp~ui ! have a gamma distribution
with a mean of 1. The GLMM with normal random effect has the advan-
tage, relative to the negative binomial model, of providing a way of per-
mitting multiple random effects and multilevel models. Land, McCall, and
Nagin (1996) discussed a semiparametric version of the GLMM that treats
the random effect in a nonparametric manner. This is in the same spirit as
the work ofAitkin (1996, 1999) for nonparametric fitting of GLMMs men-
tioned in Section 3.6.
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We illustrate a situation in which it is important to allow for a ran-
dom effect with count data using a simple data set from the 1990 General
Social Survey. We look at one question asked subjects: “Within the past 12
months, how many people have you known personally that were victims of
homicide?” We consider this response here for the white and black cat-
egories of race. The mean for the 159 blacks who responded was .522 with
a variance of 1.150; the mean for the 1149 whites who responded was .092
with a variance of .155. The ratio of the variance to the mean for each race
provides evidence of overdispersion for a Poisson model. It is plausible
that, for each race, the expected value of the response would vary accord-
ing to various unmeasured factors such as demographic variables and the
location of one’s residence.

For the ordinary Poisson model with log link, the estimated differ-
ence of 1.733 between the log mean for blacks and the log mean for whites
has an estimated standard error of .147. However, it is much more natural
to use a model permitting subject heterogeneity. Adding a parameter by
using the negative binomial approach with quadratic variance function
(using ML fitting in SAS with PROC GENMOD), the log-likelihood in-
creases by 61.1 (deviance decreases by 122.2). The estimated difference is
still 1.733 between the log means, since for this case both models provide
fitted means equal to the observed ones (and log(.5220.092)51.733), but
now the estimated standard error increases to .238. The Wald 95 percent
confidence interval for the ratio of means for blacks and whites goes from
exp[1.7336 1.96(.147)]5 (4.2,7.5) for the ordinary Poisson model to
exp[1.7336 1.96(.238)]5 (3.5,9.0) for the negative binomial model.

Other examples of applications of models that add random effects
to Poisson regression include the analysis of cancer maps in epidemiology
(Breslow and Clayton 1993) and modeling variability in bacteria counts
(Aitchison and Ho 1989).

4. MODEL FITTING AND PREDICTION

Specification of a parametric GLMM is done in two stages. First, condi-
tional on the random effectsu, the datay are assumed to follow a proba-
bility distribution in the exponential family. This is a broad family of
probability distributions that includes the normal, binomial, and Poisson.
Let f ~y6u;b! represent the conditional density (or mass) function ofy
givenu, whereb is as in (2). For example, consider the model of Section
2.1. In this case,y 5 ~ y11, y12, + + + , yI1, yI 2! t , u 5 ~u1, + + + ,uI !

t , b 5 ~a,b! t ,
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and we have

f ~y6u;a,b! 5 )
i51

I exp$ yi1~a 1 ui !%

~11 exp$a 1 ui %!

exp$ yi 2~a 1 b 1 ui !%

~11 exp$a 1 b 1 ui %!
+

The second part of the specification involves making an assump-
tion about the distribution of the random effects,u. Typically,u is assumed
to be multivariate normal with mean zero and covariance matrixV. Often
V is known up to a vector ofvariance components, s2. Let f ~u;s! denote
the probability density function ofu. In the model of Section 2.1, the com-
ponents ofu are assumed to be independentN~0,s2!, which means thats
has only one component and

f ~u;s! 5 )
i51

I 1

!2ps2
expH2 1

2s2 ui
2J+

In this section we discuss estimation ofc 5 ~b t,s t ! t , the vector of
unknown parameters in our model, using exact ML estimation as well as
two approximate ML techniques: one based on an analytical approxima-
tion of the likelihood integrand and the other on Bayes methods with dif-
fuse priors.

4+1+ Exact Maximum Likelihood

As Searle et al. (1992:232) point out, maximum likelihood is a “well-
established and well-respected method of estimation that has a variety of
optimality properties.” As such, ML estimation is usually the default tech-
nique for estimating parameters. In general, the GLMM likelihood func-
tion is the marginal mass function of theobserveddata,y, viewed as a
function of the parameters; that is,

L~b,s6y! 5 E f ~y6u;b! f ~u;s! du+ (15)

This expression nearly always involves intractable integrals whose dimen-
sion depends on the structure of the random effects. For example, the like-
lihood function for the model of Section 2.1 is given by
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L~a,b,s6y! 5 )
i51

I E
2`

` exp$ yi1~a 1 ui !%

~11 exp$a 1 ui %!

exp$ yi 2~a 1 b 1 ui !%

~11 exp$a 1 b 1 ui %!

3
1

!2ps2
expH2 ui

2

2s2 Jdui

which has no closed-form solution. When the dimension of the intractable
integrals is small, numerical integration can be used to closely approxi-
mate the likelihood (Crouch and Spiegelman 1990), as is done in SAS’s
NLMIXED. However, the error induced by replacing the intractable inte-
gral with a finite sum (as is done in Gauss-Hermite quadrature methods)
becomes more and more difficult to control as the dimension of the inte-
gral increases.

Recently developed Monte Carlo methods for finding the exact
maximum-likelihood estimate provide an alternative to numerical integra-
tion. These iterative methods can handle high-dimensional integrals better
than numerical integration. Unfortunately, they require fairly sophisti-
cated computer programs, and, as of now, there is no general software
available. The Monte Carlo-based method that has received the most at-
tention is the Monte Carlo EM (MCEM) algorithm, which is now described.

The EM algorithm (Dempster, Laird, and Rubin 1977) is a popular
method of finding ML estimates in normal theory mixed models (Searle
et al. 1992, ch. 8). Consider application of the EM algorithm in the GLMM
setting withu assuming the role ofmissing data. The E-step of the EM
algorithm requires calculation of

E$log f ~y,u;c!6y;c ~r ! %, (16)

wheref ~y,u;c!5 f ~y6u;b! f ~u;s! is the density of thecomplete dataand
c ~r ! denotes the value ofc from ther th iteration of EM. As the notation
suggests, the expectation in (16) is with respect to the conditional distri-
bution ofu giveny with parameter value set equal toc ~r ! , whose density
we write asf ~u6y;c ~r ! !. Unfortunately, analytical evaluation of (16) is
also impossible, because (15) cannot be written in closed form.

The MCEM algorithm, introduced by Wei and Tanner (1990), cir-
cumvents this difficulty by replacing the intractable expectation with a
Monte Carlo approximation. There are (at least) three different methods of
constructing a Monte Carlo estimate of (16) in the GLMM context. The
most obvious method is to use independent simulations fromf ~u6y;c ~r ! !.
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Booth and Hobert (1999) explained how to obtain such a sample through
rejection sampling and also how to form a different estimate using impor-
tance sampling. The third method is Markov chain Monte Carlo (MCMC).
McCulloch (1994) and Chan and Kuk (1997) showed how to use the Gibbs
sampler for some specific binary data models, while McCulloch (1997)
gave a general Hastings-Metropolis algorithm that will, in theory, work for
any GLMM; see also Liao (1999).

Of course, there is no free lunch. While the use of MCEM circum-
vents a complicated expectation at each E-step, it requires a method for
choosing the Monte Carlo sample size at each MCE-step. Booth and Hobert
(1999) and Levine and Casella (1998) discussed methods for choosing an
appropriate Monte Carlo sample size at each iteration.

In stating that the methods of this subsection provide “exact” ML
estimates, we mean that the approximations converge to the ML estimates
as they are applied more finely—for instance, as the number of quadra-
ture points increases in an appropriate manner for numerical integration
and as the Monte Carlo sample size increases in the MCEM method. This
is in contrast to the approximate methods of the next subsection, which
may potentially yield values far from the ML estimates no matter how
applied.

4+2+ Penalized Quasi Likelihood

If one is willing to sacrifice exactness for ease of implementation, there are
approximate ML methods that maximize an analytical approximation of
the likelihood function instead of the likelihood function itself. The main
approaches involve integrating a first-order Taylor series expansion of the
likelihood integrand around the approximate posterior modes of the ran-
dom effects (Goldstein 1991; Schall 1991; Breslow and Clayton 1993;
Wolfinger and O’Connell 1993; Longford 1993; Longford 1994; McGil-
christ 1994). In particular, Breslow and Clayton’s (1993) algorithm, which
is motivated using a penalized quasi-likelihood (PQL) argument, is essen-
tially the same as the algorithm proposed by Wolfinger and O’Connell
(1993), based on the idea of pseudo-likelihood. This algorithm involves
iterative fitting of normal theory linear mixed models and can be imple-
mented using the %GLIMMIX macro in SAS (see Littell et al. 1996). Even
though this method is iterative, it involves no numerical integration or
Monte Carlo approximation and so is much simpler to program than the
exact ML methods. Here is a brief description:
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Each iteration contains two steps; the first updatesb and the second
updatess. Suppose that~b ~r !,s ~r ! ! are the values afterr iterations.

The b update can be motivated using Henderson’s mixed-model
equations (Henderson et al. 1959). To this end, consider the normal theory
mixed model—that is, the model in which bothf ~y6u;b! andf ~u;s! are
normal densities. Let[s be the ML or restricted ML (REML) estimate of
s. It is well known (Searle et al. 1992, sec. 7.6) that the values ofb and
u that jointly maximize the functionf ~y6u;b! f ~u; [s! are the ML esti-
mate ofb and the estimated best linear unbiased predictor (EBLUP) of
u. This motivates the following update forb in the GLMM context.
Given s ~r ! , the functionf ~y6u;b! f ~u;s ~r ! ! is maximized with respect
to b andu andb ~r11! is assigned the maximizing value ofb. This max-
imization is not trivial and will almost always require an iterative tech-
nique such as Newton-Raphson.

The s update is based on another normal approximation. Given
b ~r ! andu~r ! , aworking dependent variable, z, is constructed just as it is in
the usual iteratively reweighted least-squares algorithm for fitting gener-
alized linear models (McCullagh and Nelder 1989:40). This working de-
pendent variable is then assumed to follow a normal linear mixed model
and ML or REML is used to estimate the variance components (e.g., see
Searle et al. 1992, ch. 6). The components ofs ~r ! are then assigned the
values of the corresponding ML or REML estimates.

The main advantage of PQL is its relative simplicity, avoiding nu-
merical integration and being computationally feasible for very large data
sets and complex multilevel models that may not be feasible with the meth-
ods of Section 4.1. However, this iterative scheme doesnot yield the ML
estimate ofc 5 ~b t,s t ! t . Indeed, McCulloch (1997) uses some analytical
arguments in conjunction with simulation to show that this method can
perform quite poorly relative to ML; see also Booth and Hobert (1999,
sec. 7.3) for an analysis of a data set that illustrates the potential for large
differences between ML and PQL, and Breslow and Lin (1995) and Lin
and Breslow (1996) for “bias-corrected” versions of PQL. Generally, the
PQL approach deteriorates as the data depart from normal (e.g., binary)
and as the variance components increase. To illustrate, consider the opin-
ion about abortion data of Section 3.2. For the parameterization setting
b3 5 0, the ML estimates for the random-effects model areZb1 5 +83
~se5 +16!, Zb25 +29~se5 +16! with [s58.8 reflecting a very strong within-
subject dependence. By contrast, the PQL estimates (obtained using the
%GLIMMIX macro in SAS) are Zb1 5 +87 ~se5 +07!, Zb2 5 +31 ~se5 +07!
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with [s 5 4.3. The PQL approximations to the ML estimates are decent for
$bj % , but the standard errors and the estimate ofs are only about half of
what they should be. In fact, when true variance components are large,
PQL ordinarily tends to produce variance component estimates that have
substantial negative bias (Breslow and Lin 1995). The PQL approach pro-
vided a good approximation for the ML estimates for the other binary data
examples presented here.

Generally speaking, PQL is a good approximation to ML, provided
the random-effects variances are relatively small (that is, when the fixed
effects dominate the model) or the response is approximately normal. Im-
provements of such approximations have been proposed for cases in which
they may behave poorly (e.g., Breslow and Lin 1995; Lin and Breslow
1996; Goldstein and Rasbash 1996). However, we recommend that ana-
lysts attempt to use exact ML, rather than possibly poor approximations
such as PQL. We have briefly described the approximate methods above
because most current software for GLMMs uses them rather than ML and
because of the scope of their computational feasibility. Over time, how-
ever, as computational methods continue to be refined, we believe that ML
fitting of GLMMs will become more commonplace and the approximate
methods will lose their current appeal.

4+3+ A Bayesian Model with a Diffuse Prior

In a Bayesian version of our modelc is treated as a random variable with
prior densityp~c!. The posterior density is given by

p~u,c6y! 5
f ~y,u;c!p~c!

c~y!

where

c~y! 5 EE f ~y,u;c!p~c! du dc,

which is typically not available in closed form because of the same intrac-
table integrals that cause trouble in the likelihood function. A flat prior,
p~c! 51, results in a posterior (forc) that is simply a constant multiple of
the likelihood function (15). Therefore, if the resulting posterior isproper,
MCMC methods that can also be used to study intractable posterior dis-
tributions (e.g., the Gibbs sampler) can be used to study the likelihood
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function. While flat priors typically result in proper posteriors in normal
theory mixed models (Hobert and Casella 1996), they lead to improper
posteriors for many of the models considered in this paper (Natarajan and
McCulloch 1995).

One way to ensure a proper posterior is to use a proper prior. If a
“diffuse” but proper prior is used in place of a flat prior, we might hope that
the resulting posterior is close to the likelihood function. Furthermore, we
can legitimately use MCMC methods to find the posterior mode, which we
might hope is a reasonable approximation to the ML estimate. However,
the use of a proper diffuse prior need not result in a posterior mode that is
close to the ML estimate, especially when the data contain little informa-
tion about the variance components (Kass and Wasserman 1996). More-
over, the simulation results of Natarajan and McCulloch (1998) showed
that using a diffuse prior can lead to Markov chains that converge very
slowly. Thus, even if the likelihood and posterior are similar, MCMC tech-
niques may be of no practical use because of slow mixing. In our opinion,
this approximate Bayes method is the least attractive of all the approxi-
mate methods.

4+4+ Inference for Model Parameters

After fitting the model, the next step is usually inference about the com-
ponents ofc. We first consider inference aboutb. The asymptotic normal-
ity of the ML estimate ofb can be used to form approximate confidence
sets in the usual way (McCullagh and Nelder 1989, app. A). Furthermore,
hypotheses involvingb can be tested using asymptotic likelihood-ratio
tests (LRTs); that is, using the fact that minus twice the log of the likelihood-
ratio statistic~22 logl! has an asymptoticx2 distribution under the null
(McCullagh and Nelder 1989, app.A). If an MCEM program for fitting the
model is available, the necessary evaluations of the likelihood and deriv-
atives of the likelihood at the ML estimate can be performed via Monte
Carlo with little additional programming; for example, see Booth and
Hobert (1999, sec. 6).

Regarding the testing of variance components, it is unfortunate that
22 logl does not necessarily have an asymptoticx2 distribution under
the null when the hypothesis involves parameters on the boundary of the
parameter space—e.g., when testing that a variance component is equal to
zero (Self and Liang 1987). (This difficulty has nothing to do with the
categorical nature of the data; indeed, the same problem arises in normal
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linear mixed models for tests about the variance components (Miller 1977).)
While calculation of the true asymptotic distribution can in general be
quite difficult, there are several important special cases for which it is
known. In particular, suppose that the model contains a single variance
component,s2, and that we wish to testH0 :s2 5 0 versusH1 :s2 . 0.
Self and Liang (1987, case 5) show that, in this situation, the asymptotic
distribution of22 logl under the null is a 50:50 mixture ofx0

2 andx1
2

random variables. (Ax0
2 is a point mass at 0 and corresponds to[s 5 0,

for which the maximized likelihoods are identical underH0 andH1, and
hence their ratiol 5 1 and22 logl 5 0.) Thus, when [s . 0 andt 5
22 logl . 0, the P-value for this large-sample test is~102!P~x1

2 . t !, half
the P-value that applies forx1

2 asymptotic tests (such as tests about com-
ponents ofb).

Recently, Lin (1997) has shown that the score test (McCullagh
and Nelder 1989, app. A) is a flexible alternative to the LRT for testing
that one or all of the variance components in the model are equal to
zero. Again, in the MCEM context, it is straightforward to form Monte
Carlo approximations of the likelihood derivatives that comprise the score
statistic.

4+5+ Prediction of Random Effects

In Section 4.1 we discussed a method for forecasting election results by
predicting random effects associated with 50 states and the District of
Columbia. In that setting the procedure involved estimating0predicting a
sum of the forma 1 ui , wherea represented a fixed but unknown nation-
wide propensity to vote for Clinton andui was a random effect associated
with the i th state. More generally, when random effects are used to mea-
sure variation among a relatively large number of small areas or domains,
it is often of interest to estimate0predict mixed linear combinations of
fixed and random effects of the formh5xtb1ztu specific to the domains
of interest. For example, in educational surveys, the domains might be
schools for which a rating is desired or even individual children whose
ability is being predicted.

Except for the presence of the unknown fixed effects parameterb
and the variance components parameters, the GLMM provides a com-
plete description of the joint distribution of the observable datay and the
unobservable random effectu. After the data have been collected (i.e.,
observed), all the information about the random effects is contained in the
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conditional distribution ofu giveny. This distribution is implicitly defined
by the assumed GLMM via the relationshipf ~u6y! @ f ~y,u!. Thus, for
example, a point prediction foru is given by the mean of this conditional
distribution,E~u6y!. This predictor is “best” in the sense that its mean
squared error is less than that of any other predictor (Searle et al. 1992,
sec. 7.2).

Two practical issues that arise with the use ofE~u6y! as a predictor
for u are that the conditional expectation (1) depends on the unknown
parametersb ands and (2) is usually not available in closed form. The
first of these difficulties is overcome in practice by simply plugging in
estimates in place of the unknown parameters. In the case of the normal
theory linear mixed model, substitution of the ML estimate forb results in
the best linear unbiased predictor or BLUP while further substitution for
s, if necessary, results in the so-called “empirical” BLUP (Searle et al.
1992, sec. 9.3). The second complication can be dealt with by numerically
calculating the desired expectation, either exactly (using numerical inte-
gration or Monte Carlo methods) or approximately. In particular, a minor
side benefit of the PQL algorithm used in the SAS macro GLIMMIX is that
it automatically produces approximations for the predicted random ef-
fects. The predictor[u obtained by plugging parameter estimates into the
conditional expectationE~u6y! is often referred to as theempirical Bayes
predictor; for a detailed discussion of this approach, see Carlin and Louis
(1996).

The more data that are available from a particular domain, the more
accurately random effects associated with that domain can be predicted.
Suppose thatyi denotes the data collected from thei th domain with asso-
ciated random effectui . The amount of uncertainty aboutui is measured by
the conditional variance, Var~ui 6yi !, or by the corresponding standard de-
viation. Thesestandard errors of predictioncan also be computed or ap-
proximated using the conditional distribution implied by the assumed
GLMM and by substituting estimates of unknown parameters where nec-
essary. A common criticism of this method is that no adjustment is made
for the sampling variability in the parameter estimates. The parameters are
effectively treated as though they are known, and hence the amount of
uncertainty about the random effects tends to be underestimated. Booth
and Hobert (1998) discussed this issue and proposed a method for correct-
ing the “naive” standard errors. However, their adjustments are compli-
cated and difficult to compute. Moreover, unless the total amount of data is
very limited (leading to very unreliable parameter estimates), corrections
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to the naive standard errors are often relatively small and of little practical
significance.

5. MARGINALLY SPECIFIED MODELS

Section 2.2 highlighted the conditional (i.e.,subject-specific) interpreta-
tion of the regression parameters in a GLMM. In some instances, however,
the marginal (i.e.,population averaged) effects are of primary interest.
For example, consider a survey of opinions of different ethnic groups in
which responses on a variety of social issues are measured on a binary
scale (yes0no, favor0oppose, etc.). Quantities of primary interest in such a
setting would typically include between-group odds ratios among mar-
ginal probabilities for the different ethnic groups. In such cases it is more
convenient to parameterize the model in such a way that the regression
parameters have a direct marginal interpretation.

One popular approach to modeling marginal effects is to use gen-
eralized estimating equations (GEE). A brief description of this approach
follows. As before letyij denote thej th response in domain or clusteri and
let x ij denote a vector of associated explanatory variable values,i 51, + + + , I
and j 5 1, + + + , ni . Now suppose that the marginal mean of the~i, j !th re-
sponse,mij 5 E~ yij !, is described by the linear model

g~mij ! 5 x ij
t b, (17)

whereg is a link function. In addition, suppose that the variance ofyij is
given by Var~ yij ! 5 fij v~mij ! , wherefij 5 f0wij . If the assumed variance
function corresponds to an exponential family model, this assumed struc-
ture for the mean and variance is exactly that of a GLM. However, unlike
in a GLM, the GEE method does not require the distribution of the re-
sponses to be fully specified. Furthermore, GEE allows for dependence
between responses from the same cluster via aworking correlation matrix.
The terminology “working” is used because an adjustment to the standard
errors of the regression parameters is usually made using asandwich vari-
anceformula to account for misspecification of this part of the correlation
structure (Liang and Zeger 1986). For example, for the two-level sampling
design considered in this section and in much of the paper, it is often rea-
sonable to assume that responses within the same cluster are equicorre-
lated. On the other hand, if the responses consist of repeated measurements
taken at different times within each cluster then a working correlation
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matrix incorporating an autocorrelation structure might be more reason-
able. For a more detailed description of the GEE approach, see Liang and
Zeger (1986), Diggle et al. (1994, ch. 8), and Liang et al. (1992).

Adrawback of the GEE approach is that it does not explicitly model
random effects and therefore does not allow these effects to be estimated.
In addition, likelihood-based inferences are not possible because the joint
distribution of the responses is not fully specified. A promising recent
proposal by Heagerty (1999) attempts to overcome these deficiencies by
defining a marginally specified GLMM. Heagerty notes that the tradi-
tional conditionally specified GLMM implicitly determines the relation-
ship between the covariates and the marginal mean through the relation
mij 5 E~m ij !. For example, we pointed out in Section 2.2 that with binary
responses the assumption of a linear relationship between the covariates
and the conditional logits implied a nonlinear relationship for the marginal
logits. Conversely, if a marginal model for the mean of the form (17) is
assumed, then this implicitly determines the form of the fixed portion of
hij in the conditional model. That is, the linear predictor,hij 5x ij

t b1zij
t u i ,

in the conditional GLMM is replaced byhij 5 Dij 1 zij
t ui , whereDij is a

function of~b,s! implicitly defined by the relation between the marginal
and conditional means. Heagerty’s idea is to specify the model for the
conditional mean or the marginal mean depending upon whether a subject-
specific or population-averaged interpretation is more relevant.

6. SOFTWARE

Applications of generalized linear mixed models have undoubtedly been
hindered by the lack of adequate software. In recent years perhaps the most
popular software has been the GLIMMIX macro provided by SAS. This
macro provides estimates based on approximating the likelihood using
methods of Breslow and Clayton (1993) and Wolfinger and O’Connell
(1993). Having the GLM framework, it can fit models for a variety of
response distributions and link functions, assuming normal random ef-
fects. Version 7 of SAS has introduced PROC NLMIXED, which can also
use an adaptive version of Gauss-Hermite quadrature to approximate the
likelihood. This is substantially better when variance components are large
or data are far from normal. The availability of this procedure (or its suc-
cessors) will likely make fitting of models with random effects much more
common in the future. However, it has limitations. For instance, quadra-
ture methods are computationally feasible only for integrals of small di-
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mensions, and NLMIXED currently cannot accommodate nested random
effects.

Table 8 shows the use of NLMIXED for the shrinkage analyses of
Table 2 described in Section 3.1. Although it is easiest to use NLMIXED
with standard univariate response distributions such as Poisson and bi-
nomial, it is also possible to use it with multinomial models. Table 9
shows its use for the ordinal cumulative logit analyses of the govern-
ment spending data described in Section 3.7. First, one must define the
two linear predictors (one for each cumulative probability) and the rela-
tionship between each multinomial probability and the linear predictors.
For these data, the response is recoded as a vector,~ y1, y2, y3! taking
three possible values, (0,0,1), (0,1,0) or (1,0,0), corresponding to the three
possible responses, 1, 2, or 3. These response vectors are multinomials

TABLE 8
SAS (PROC NLMIXED) Code for Analyses of Table 2

data new;
inpu t x n offset;
sub = _n_;
datalines;
1 5 −0.40898
16 32 −0.29363
10 19 0.26574
21 34 −0.19275
129 240 0.20312
. ...
8 14 0.17246
1 4 −0.29066
;

proc nlmixed;
parms alpha = .2 sigma = .04;
eta = alph a + u + offset;
p = exp(eta) / (1 + exp(eta));
model x ~ binomial(n,p);
random u ~ normal(0,sigma * sigma) subject = sub;
predict p out = new2;

run;

proc print data=new2;
run;
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TABLE 9
SAS (PROC NLMIXED) Code for Analyses of Government Spending Data

data new;
input subject gender race1 race2 item1 item2 item3 y1 y2 y3 count;
datalines;
/ * Subject Gender Race1 Race2 Item1 Item2 Item3 Y1 Y2 Y3 Count */

1 0 1 0 1 0 0 1 0 0 107
1 0 1 0 0 1 0 1 0 0 107
1 0 1 0 0 0 1 1 0 0 107
1 0 1 0 0 0 0 1 0 0 107
2 1 0 1 1 0 0 1 0 0 20
2 1 0 1 0 1 0 0 0 1 20
2 1 0 1 0 0 1 0 1 0 20
2 1 0 1 0 0 0 0 0 1 20
.
.
.

;
proc nlmixed data=new;

bounds i2 > 0;
eta1 = i1 + gender * beta1 + race1 * beta2 + race2 * beta3

+ item1 * beta4 + item2 * beta5 + item3 * beta6 + u;
eta2 = i1 + i2 + gender * beta1 + race1 * beta2 + race2 * beta3

+ item1 * beta4 + item2 * beta5 + item3 * beta6 + u;
p1 = 1/(1 + exp(-eta1));
p2 = 1/(1 + exp(-eta2)) − 1/(1 + exp(-eta1));
p3 = 1 − 1/(1 + exp(-eta2));
z = (p1 ** y1) * (p2 ** y2) * (p3 ** y3);
if (z > 1e-8) then 11 = log(z);

else ll=-1e100;
model y1 ; general(ll);
estimate ‘thresh2’ i1+i2;
random u ~ normal(0,su * su) subject = subject;
replicate count;

run;

7
1



with sample sizes of 1. For outcome probabilities,p1, p2, and p3, the
contribution to the multinomial log likelihood isp1

y1 p2
y2 p3

y3 + NLMIXED
allows the user to code general likelihoods, as we defined it with the
statementz5 ~ p1ppy1!p~ p2ppy2!p~ p3ppy3!. This likelihood is checked
to see if it is numerically too close to zero, then converted to the log
likelihood (the statementll 5 log~z!!. The statementy1 ; general~ll !
tells SAS thatll gives the value of the log likelihood. (Since the likeli-
hood is a function of the parameters, it does not matter ify1, y2, or y3 is
used for that statement). Finally, an estimate statement is used to obtain
an estimate of the second threshold.

A variety of other programs are currently in general circulation.
For instance, EGRET (now distributed by Cytel Software, in Cambridge,
Massachusetts) can fit certain mixed logit models, approximating the like-
lihood with Gauss-Hermite quadrature or replacing the normal random-
effects distribution by a binomial distribution. Hedeker and Gibbons (1994)
supplied a FORTRAN program MIXOR for ML fitting of proportional
odds models with random effects. Harvey Goldstein and colleagues at the
Institute of Education in London provide a general-purpose program for
multilevel modeling called MLn (www.ioe.ac.uk0multilevel0), that can fit
the model using an improved version of PQL. One can use a fully Bayesian
approach using MCMC with BUGS, available from the MRC Biostatistics
Unit at Cambridge (www.mrc-bsu.cam.ac.uk0bugs). Other programs
include HLM (Scientific Software International, Chicago), written by
A. Bryk, S. Raudenbush, and R. Congdon and which also uses an im-
proved version of PQL, LogXact (from Cytel Software) for the conditional
ML approach to eliminating cluster terms, and a GLIM macro for para-
metric and nonparametric fitting of GLMMs (Aitkin and Francis 1995);
see Zhou, Perkins, and Hui (1999) for a description of some software for
multilevel models.

The numerical approximations necessary to fit GLMMs require care-
ful use even with software such as NLMIXED in SAS. With quadrature-
based software, one should use a sufficient number of quadrature points
to obtain simultaneously close approximations to the maximized log-
likelihood and to ML estimates of the fixed effects, the standard errors of
the fixed effects, the variance components, and the standard errors of the
variance components. NLMIXED determines the number of quadrature
points adaptively, and the default number selected is often quite low (at
least, this is the case for versions 7 and 8 of SAS). Usually this is sufficient
for the fixed effects but not the random effects part of the model; obtaining
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sufficiently precise approximations for the standard errors and for the vari-
ance components usually requires considerably more points. In NLMIXED,
we recommend checking these estimates while increasing the number of
quadrature points (using theqpoints5 option), to be confident that re-
sults have stabilized. We also recommend specifying the variance compo-
nent in terms of the standard deviation in the model code. This helps in
estimating variance components very close to 0, and also the standard
deviation is usually preferred over the variance for interpretation.

Using large numbers of quadrature points may require long com-
puting times. This is also true of data with a large number of clusters or
several fixed and random effects within a cluster. Accurate starting values
help speed convergence. Starting values can be obtained using the faster
nonadaptive quadrature—for instance, by specifyingnoadandnoadscale
in the NLMIXED options or using the GLIMMIX macro. Since starting
values need not be too accurate, milder convergence bounds can be used to
obtain them.

7. CONCLUDING REMARKS

This article has shown a variety of social-science-related applications of
generalized linear models for categorical data that contain random effects.
Although introductory in nature, the models discussed have had relatively
simple random-effects structure. However, there are many situations, es-
pecially in multilevel or multivariate settings (Catalano and Ryan 1992;
Gueorguieva and Agresti 2000), where more complex models are appro-
priate. There is also continuing methodological research on random-effects
models, such as developing ways of efficiently obtaining ML estimates
and ways of checking goodness-of-fit of models.

Although random effects provide a natural way of handling many
social science applications, as with any advanced statistical method there
is the potential for misuse or inadequate use. For instance, with added
complexity of models it can be more difficult to obtain ML estimates, and
some algorithms may provide poor approximations for them. There is still
much work to be done on the development of model-fitting methodology,
as numerical integration is generally infeasible for complex models in which
obtaining the likelihood involves high-dimensional integrals. The Bayes-
ian paradigm (e.g., using the software BUGS) is becoming increasingly
popular, but again with complex models there is the greater danger of
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inappropriate choices of priors (e.g., improper priors leading to improper
posteriors that are not detected by MCMC methods).

In addition, little work has been done on model checking (e.g.,
goodness-of-fit tests) and model diagnostics for GLMMs, even in the
normal theory case. Also, model comparison of GLMMs can be diffi-
cult. As we have seen, in some cases standard methods of comparing
likelihoods fail because, under the null hypothesis, certain parameters
(e.g., variance components) fall on the boundary of the parameter space,
thus violating standard assumptions required to generate the usual as-
ymptotic distributions.

Finally, choice of form of an appropriate model is still an issue.
There is a controversy among some statisticians about whether the effects
generated in marginal models are more or less relevant than the condi-
tional effects resulting from random-effects models (e.g., Lindsey 1999).
Most of the discussion of this has been with relation to biomedical and
epidemiological issues, and it is time to consider the practical implications
of these matters for social science applications. In particular, it is a chal-
lenge for methodologists even to explain to practitioners why marginal
and conditional effects differ when one uses a nonlinear link function.

Even with these cautions in mind, we think that the random-effects
approach provides a potentially very useful extension of standard gener-
alized linear models for social science applications. We hope that this ar-
ticle contributes toward helping methodologists understand their use.
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